快捷搜索:  汽车  科技

初中数学线段大小比较题(中考数学微专题2)

初中数学线段大小比较题(中考数学微专题2)6、实际上解决本题的方法还有很多.如构造相似三角形,利用相似,通过中间比证明线段相等.利用“双A形”结合平行线分线段成比例定理证明线段相等等.本例中,用到的方法贯穿整个初中阶段,同学们要注意方法的提炼、总结、归类,由此掌握数学思想方法,提高解决数学问题的能力.3、全等变换在初中阶段不常用,但用之有效.本例中方法4、方法5、方法6、方法7都用了轴对称;方法8和方法9都用到了中心对称的思想;方法10和方法11既有轴对称又有中心对称的思想.4、利用等边对等角的性质,构造辅助圆,结合利用正弦定理.5、巧妙利用45度的特殊角,构造等腰直角三角形,转移线段建立联系.如方法6和方法7.

证明线段相等,是初中阶段学生学习几何后经常遇到的一类问题,是学生学习几何的常见入门题,也是学生后继学习的基础.本文以一道题为例,介绍证明线段相等的常见方法.

初中数学线段大小比较题(中考数学微专题2)(1)

初中数学线段大小比较题(中考数学微专题2)(2)

初中数学线段大小比较题(中考数学微专题2)(3)

初中数学线段大小比较题(中考数学微专题2)(4)

反思

1、本题纯以角度为条件,由条件可以求出所有角的度数,由此联想到寻找特殊角度,构造含特殊角度的直角三角形,所以首先想到方法1.

2、构造全等是我们解决证明线段相等的常见手段.当把相关线段放在三角形中发现不全等时,用“一定、二看、三构造”的策略构造全等形,方法2和方法3就呼之而出.

3、全等变换在初中阶段不常用,但用之有效.本例中方法4、方法5、方法6、方法7都用了轴对称;方法8和方法9都用到了中心对称的思想;方法10和方法11既有轴对称又有中心对称的思想.

4、利用等边对等角的性质,构造辅助圆,结合利用正弦定理.

5、巧妙利用45度的特殊角,构造等腰直角三角形,转移线段建立联系.如方法6和方法7.

6、实际上解决本题的方法还有很多.如构造相似三角形,利用相似,通过中间比证明线段相等.利用“双A形”结合平行线分线段成比例定理证明线段相等等.本例中,用到的方法贯穿整个初中阶段,同学们要注意方法的提炼、总结、归类,由此掌握数学思想方法,提高解决数学问题的能力.

猜您喜欢: