快捷搜索:  汽车  科技

不断提升算力的需求与功耗(低算力平台模型性能的优化)

不断提升算力的需求与功耗(低算力平台模型性能的优化)以上测试结果基于对shuffle block的所有卷积和bn层进行融合的结果,抽取coco val2017中的1000张图片进行测试,可以看到,在i5的核上,fuse后的模型在x86 cpu上单次向前的加速很明显。若是对于arm端cpu,效果会更加明显。于是本着这样的初衷,做了一套基于v5lite-s模型的实验,并将测试结果贴出供大家相互交流:大佬的想法认为fuse是可以做的,但没那么必要,fuse(conv bn)=CB的作用在于其他,而对于提速的作用微乎及微,不过本人更加坚持自己的观点,因为yolov5的对比是基于高算力显卡,低端卡,甚至无GPU,NPU加持的设备是有明显的提速作用。特别对于复用太多group conv或depthwise conv的模型,举个例子,shufflenetv2被当成是高效的移动端网络而被常常使用于端侧的backbone,我们看到单个shuffle bloc

作者丨陈e

来源丨GiantPandaCV

编辑丨极市平台

一、模型优化

此处的模型优化指的是我们常说的模型卷积层与bn层的融合或者conection,identity等结构重参化的操作,改想法来源于某天无意参与的一次讨论:

不断提升算力的需求与功耗(低算力平台模型性能的优化)(1)

大佬的想法认为fuse是可以做的,但没那么必要,fuse(conv bn)=CB的作用在于其他,而对于提速的作用微乎及微,不过本人更加坚持自己的观点,因为yolov5的对比是基于高算力显卡,低端卡,甚至无GPU,NPU加持的设备是有明显的提速作用。

特别对于复用太多group conv或depthwise conv的模型,举个例子,shufflenetv2被当成是高效的移动端网络而被常常使用于端侧的backbone,我们看到单个shuffle block(stride=2)的组件就使用了两个深度可分离卷积:

不断提升算力的需求与功耗(低算力平台模型性能的优化)(2)

光是一整套网络就用了25组depthwise conv(原因在于shufflenet系列为低算力cpu设备设计,无可避免复用大量深度分离卷积)

于是本着这样的初衷,做了一套基于v5lite-s模型的实验,并将测试结果贴出供大家相互交流:

不断提升算力的需求与功耗(低算力平台模型性能的优化)(3)

以上测试结果基于对shuffle block的所有卷积和bn层进行融合的结果,抽取coco val2017中的1000张图片进行测试,可以看到,在i5的核上,fuse后的模型在x86 cpu上单次向前的加速很明显。若是对于arm端cpu,效果会更加明显。

融合的脚本如下所示:

import torch from thop import profile from copy import deepcopy from models.experimental import attempt_load def model_print(model img_size): # Model information. img_size may be int or list i.e. img_size=640 or img_size=[640 320] n_p = sum(x.numel() for x in model.parameters()) # number parameters n_g = sum(x.numel() for x in model.parameters() if x.requires_grad) # number gradients stride = max(int(model.stride.max()) 32) if hasattr(model 'stride') else 32 img = torch.zeros((1 model.yaml.get('ch' 3) stride stride) device=next(model.parameters()).device) # input flops = profile(deepcopy(model) inputs=(img ) verbose=False)[0] / 1E9 * 2 # stride GFLOPS img_size = img_size if isinstance(img_size list) else [img_size img_size] # expand if int/float fs = ' %.6f GFLOPS' % (flops * img_size[0] / stride * img_size[1] / stride) # imh x imw GFLOPS print(f"Model Summary: {len(list(model.modules()))} layers {n_p} parameters {n_g} gradients{fs}") if __name__ == '__main__': load = 'weights/v5lite-e.pt' save = 'weights/repv5lite-e.pt' test_size = 320 print(f'Done. Befrom weights:({load})') device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = attempt_load(load map_location=device) # load FP32 model torch.save(model save) model_print(model test_size) print(model)

融合op的核心代码如下:

if type(m) is Shuffle_Block: if hasattr(m 'branch1'): re_branch1 = nn.Sequential( nn.Conv2d(m.branch1[0].in_channels m.branch1[0].out_channels kernel_size=m.branch1[0].kernel_size stride=m.branch1[0].stride padding=m.branch1[0].padding groups=m.branch1[0].groups) nn.Conv2d(m.branch1[2].in_channels m.branch1[2].out_channels kernel_size=m.branch1[2].kernel_size stride=m.branch1[2].stride padding=m.branch1[2].padding bias=False) nn.ReLU(inplace=True) ) re_branch1[0] = fuse_conv_and_bn(m.branch1[0] m.branch1[1]) re_branch1[1] = fuse_conv_and_bn(m.branch1[2] m.branch1[3]) # pdb.set_trace() # print(m.branch1[0]) m.branch1 = re_branch1 if hasattr(m 'branch2'): re_branch2 = nn.Sequential( nn.Conv2d(m.branch2[0].in_channels m.branch2[0].out_channels kernel_size=m.branch2[0].kernel_size stride=m.branch2[0].stride padding=m.branch2[0].padding groups=m.branch2[0].groups) nn.ReLU(inplace=True) nn.Conv2d(m.branch2[3].in_channels m.branch2[3].out_channels kernel_size=m.branch2[3].kernel_size stride=m.branch2[3].stride padding=m.branch2[3].padding bias=False) nn.Conv2d(m.branch2[5].in_channels m.branch2[5].out_channels kernel_size=m.branch2[5].kernel_size stride=m.branch2[5].stride padding=m.branch2[5].padding groups=m.branch2[5].groups) nn.ReLU(inplace=True) ) re_branch2[0] = fuse_conv_and_bn(m.branch2[0] m.branch2[1]) re_branch2[2] = fuse_conv_and_bn(m.branch2[3] m.branch2[4]) re_branch2[3] = fuse_conv_and_bn(m.branch2[5] m.branch2[6]) # pdb.set_trace() m.branch2 = re_branch2 # print(m.branch2) self.info()

下图未进行fuse的模型参数量,计算量,以及单个shuffle block的结构,可以看到未融合的shuffle block中的单个branch2分支就包含了8个子op.

不断提升算力的需求与功耗(低算力平台模型性能的优化)(4)

而融合后的模型参数量减少了0.5万,计算量少了0.6万,主要还是来源于bn层,并且可以看到单个branch2分支中的op减少了三个,整套backbone网络算下来共减少了25个bn层

不断提升算力的需求与功耗(低算力平台模型性能的优化)(5)

番外话

前言中提到的重参化操作之重要性更甚于op融合,引入前期发布的g模型:pogg:追求极致:Repvgg重参化对YOLO工业落地的实验和思考(https://zhuanlan.zhihu.com/p/410874403),由于g模型为高性能gpu涉及,backbone使用了repvgg,在训练时通过rbr_1x1和identity进行涨点,但推理时必须重参化为3×3卷积,才具有高性价比,最直观的,使用以下代码对每个repvgg block进行重参化和融合:

if type(m) is RepVGGBlock: if hasattr(m 'rbr_1x1'): # print(m) kernel bias = m.get_equivalent_kernel_bias() rbr_reparam = nn.Conv2d(in_channels=m.rbr_dense.conv.in_channels out_channels=m.rbr_dense.conv.out_channels kernel_size=m.rbr_dense.conv.kernel_size stride=m.rbr_dense.conv.stride padding=m.rbr_dense.conv.padding dilation=m.rbr_dense.conv.dilation groups=m.rbr_dense.conv.groups bias=True) rbr_reparam.weight.data = kernel rbr_reparam.bias.data = bias for para in self.parameters(): para.detach_() m.rbr_dense = rbr_reparam # m.__delattr__('rbr_dense') m.__delattr__('rbr_1x1') if hasattr(self 'rbr_identity'): m.__delattr__('rbr_identity') if hasattr(self 'id_tensor'): m.__delattr__('id_tensor') m.deploy = True m.forward = m.fusevggforward # update forward # continue # print(m) if type(m) is Conv and hasattr(m 'bn'): # print(m) m.conv = fuse_conv_and_bn(m.conv m.bn) # update conv delattr(m 'bn') # remove batchnorm m.forward = m.fuseforward # update forward """ 需要重参化后才能进行fuse操作,否则会出现重参化失败的情况 """

下方结果可以直观看出模型层数、计算量和参数量都有明显变化:

不断提升算力的需求与功耗(低算力平台模型性能的优化)(6)

二、后处理

2.1 反函数操作

后处理的优化也同样重要,而后处理优化的目的在于减少低效率循环或判断语句,避免大量使用昂贵算子等。

我们使用yolov5基于ncnn demo的代码进行测试和修改,但由于源码链接太多库,我们单抽general_poprosal函数,仿造general_poprosal函写一段使用sigmoid计算confidence再比对80类,计算bbox坐标的操作。

float sigmoid(float x) { return static_cast<float>(1.f / (1.f exp(-x))); } vector<float> ram_cls_num(int num) { std::vector<float> res; float a = 10.0 b = 100.0; srand(time(NULL));//设置随机数种子,使每次产生的随机序列不同 cout<<"number class:"<<endl; for (int i = 1; i <= num; i ) { float number = rand() % (N 1) / (float)(N 1); res.push_back(number); cout<<number<<' '; } cout<<endl; return res; } int sig() { int num_anchors = 3; int num_grid_y = 224; int num_grid_x = 224; float prob_threshold = 0.6; std::vector<float> num_class = ram_cls_num(80); clock_t start ends; start = clock(); for (int q = 0; q < num_anchors; q ) { for (int i = 0; i < num_grid_y; i ) { for (int j = 0; j < num_grid_x; j ) { float tmp = i * num_grid_x j; float box_score = rand() % (N 1) / (float)(N 1); // find class index with max class score int class_index = 0; float class_score = 0; for (int k = 0; k < num_class.size(); k ) { float score = num_class[k]; if (score > class_score) { class_index = k; class_score = score; } } float prob_threshold = 0.6; float confidence = sigmoid(box_score) * sigmoid(class_score); if (confidence >= prob_threshold) { float dx = sigmoid(1); float dy = sigmoid(2); float dw = sigmoid(3); float dh = sigmoid(4); } } } } ends = clock() - start; cout << "sigmoid function cost time:" << ends << "ms" <<endl; return 0; }

此处耗时:

number class: 0.65 0.08 0.62 0.33 0.79 0.7 0.44 0 0.96 0.75 0.92 0.66 0.54 0.23 0.14 0.75 0.94 0.88 0.76 0.81 0.28 0.37 0.34 0.19 0.46 0.93 0.79 0.86 0.64 0.55 0.84 0.91 0.33 0.53 0.71 0.53 0.69 0.63 0.67 0.35 0.24 0.97 0.94 0.91 0.66 0.63 0.14 0.4 0.28 0.24 0.29 0.2 0.58 0.65 0.51 0.79 0.49 0.47 0.94 0.84 0.38 0.84 0.88 0.61 0.99 0.17 0.02 0.02 0.42 0.96 0.48 0.6 0.08 0.33 0.84 0.04 0.8 0.22 0.16 0.57 sigmoid function cost time:68ms

修改一下函数,先使用sigmoid的反函数unsigmoid计算prob_threshold,此时就不需要先遍历80个类寻找最高得分的类,也不会遇到切入第三个for循环后一定要进行两次sigmoid操作(计算confidence)的问题,只有当box_score > unsigmoid(prob_threshold)才会进行80类的max score查找,再计算bbox坐标,confidence等信息。

float unsigmoid(float x) { return static_cast<float>(-1.0f * (float)log((1.0f / x) - 1.0f)); } int unsig() { int num_anchors = 3; int num_grid_y = 224; int num_grid_x = 224; float prob_threshold = 0.6; std::vector<float> num_class = ram_cls_num(80); clock_t start ends; start = clock(); for (int q = 0; q < num_anchors; q ) { for (int i = 0; i < num_grid_y; i ) { for (int j = 0; j < num_grid_x; j ) { float tmp = i * num_grid_x j; float box_score = rand() % (N 1) / (float)(N 1); // find class index with max class score if (box_score > unsigmoid(prob_threshold)) // 此处先用sigmoid的反函数绕过两次sigmoid,同时将前面的80类对比放至判断后面,不符合条件则不进行 { int class_index = 0; float class_score = 0; for (int k = 0; k < num_class.size(); k ) { float score = num_class[k]; if (score > class_score) { class_index = k; class_score = score; } } float confidence = sigmoid(box_score) * sigmoid(class_score); if (confidence >= prob_threshold) { float dx = sigmoid(1); float dy = sigmoid(2); float dw = sigmoid(3); float dh = sigmoid(4); } } } } } ends = clock() - start; cout << "unsigmoid function cost time:" << ends << "ms" <<endl; return 0; }

结果如下:

number class: 0.65 0.08 0.62 0.33 0.79 0.7 0.44 0 0.96 0.75 0.92 0.66 0.54 0.23 0.14 0.75 0.94 0.88 0.76 0.81 0.28 0.37 0.34 0.19 0.46 0.93 0.79 0.86 0.64 0.55 0.84 0.91 0.33 0.53 0.71 0.53 0.69 0.63 0.67 0.35 0.24 0.97 0.94 0.91 0.66 0.63 0.14 0.4 0.28 0.24 0.29 0.2 0.58 0.65 0.51 0.79 0.49 0.47 0.94 0.84 0.38 0.84 0.88 0.61 0.99 0.17 0.02 0.02 0.42 0.96 0.48 0.6 0.08 0.33 0.84 0.04 0.8 0.22 0.16 0.57 unsigmoid function cost time:77ms

貌似姿势不对,我们调高prob_threshold=0.6,得到新的结果:

sigmoid function cost time:69ms unsigmoid function cost time:47ms

此时可以看到收益,不断调高阈值,unsigmoid函数耗时越短,但取而代之的是目标都被过高的阈值卡断,函数后半部分无法进行。从而可以看出,使用反函数计算可以绕过两次sigmoid的指数操作(计算confidense),但是否使用此种方法还是需要根据实际业务分析,倘若目标的box_score都偏低,那么这种优化只会变成负优化。

2.2 omp多并行

倘若后处理存在大量for循环,且循环不存在数据依赖和函数依赖关系,可以考虑使用openml库进行多线程并行加速,比如查找80类中score最高的类:

#pragma omp parallel for num_threads(ncnn::get_big_cpu_count()) for (int k = 0; k < num_class; k ) { float score = featptr[5 k]; if (score > class_score) { class_index = k; class_score = score; } }

或者多线程计算每个目标的位置信息:

#pragma omp parallel for num_threads(ncnn::get_big_cpu_count()) for (int i = 0; i < count; i ) { objects[i] = proposals[picked[i]]; // adjust offset to original unpadded float x0 = (objects[i].rect.x) / scale; float y0 = (objects[i].rect.y) / scale; float x1 = (objects[i].rect.x objects[i].rect.width) / scale; float y1 = (objects[i].rect.y objects[i].rect.height) / scale; // clip x0 = std::max(std::min(x0 (float) (img_w - 1)) 0.f); y0 = std::max(std::min(y0 (float) (img_h - 1)) 0.f); x1 = std::max(std::min(x1 (float) (img_w - 1)) 0.f); y1 = std::max(std::min(y1 (float) (img_h - 1)) 0.f); objects[i].rect.x = x0; objects[i].rect.y = y0; objects[i].rect.width = x1 - x0; objects[i].rect.height = y1 - y0; }

但ncnn的底层源码就已经实现了并行计算,因此无加速作用,但可记作一种方法供以后使用。

经过以上修改后的模型检测效果如下:

xiaomi 10 CPU(Snapdragon 865):

不断提升算力的需求与功耗(低算力平台模型性能的优化)(7)

redmi K30 CPU(Snapdragon 730G):

不断提升算力的需求与功耗(低算力平台模型性能的优化)(8)

代码链接:https://github.com/ppogg/ncnn-android-v5lite

Welcome star and fork~

猜您喜欢: