对称密钥加密说法正确的(非对称加密算法)
对称密钥加密说法正确的(非对称加密算法)1976年,两位美国计算机学家Whitfield Diffie 和 Martin Hellman,提出了一种崭新构思,可以在不直接传递密钥的情况下,完成解密。这被称为"Diffie-Hellman密钥交换算法"。也正是因为这个算法的产生,人类终于可以实现非对称加密了:A给B发送信息1976年以前,所有的加密方法都是同一种模式:加密和解密使用同样规则(简称"密钥"),这被称为"对称加密算法",使用相同的密钥,两次连续的对等加密运算后会回复原始文字,也有很大的安全隐患。相传凯撒大帝为了防止敌人窃取信息,就使用加密的方式传递信息。那么当时的加密方式非常的简单,就是对二十几个罗马字母建立一张对照表,将明文对应成为密文。那么这种方式其实持续了很久。甚至在二战时期,日本的电报加密就是采用的这种原始加密方式。凯撒密码对照表早期的密码学一直没有什么改进,几乎都是根据经验慢慢发展的。直到20世纪中叶,由香农
专注于IT行业优质技术服务号,欢迎关注
作者:我叫Vincent
密码学是在编码与破译的斗争实践中逐步发展起来的 并随着先进科学技术的应用,已成为一门综合性的尖端技术科学。
密码学发展史在说RSA加密算法之前, 先说下密码学的发展史。其实密码学的诞生,就是为了运用在战场,在公元前,战争之中出现了秘密书信。在中国历史上最早的加密算法的记载出自于周朝兵书《六韬.龙韬》中的《阴符》和《阴书》。在遥远的西方,在希罗多德(Herodotus)的《历史》中记载了公元前五世纪,希腊城邦和波斯帝国的战争中,广泛使用了移位法进行加密处理战争通讯信息。
相传凯撒大帝为了防止敌人窃取信息,就使用加密的方式传递信息。那么当时的加密方式非常的简单,就是对二十几个罗马字母建立一张对照表,将明文对应成为密文。那么这种方式其实持续了很久。甚至在二战时期,日本的电报加密就是采用的这种原始加密方式。
凯撒密码对照表
早期的密码学一直没有什么改进,几乎都是根据经验慢慢发展的。直到20世纪中叶,由香农发表的《秘密体制的通信理论》一文,标志着加密算法的重心转移往应用数学上的转移。于是,逐渐衍生出了当今重要的三类加密算法:非对称加密、对称加密以及哈希算法(HASH严格说不是加密算法,但由于其不可逆性,已成为加密算法中的一个重要构成部分)。
1976年以前,所有的加密方法都是同一种模式:加密和解密使用同样规则(简称"密钥"),这被称为"对称加密算法",使用相同的密钥,两次连续的对等加密运算后会回复原始文字,也有很大的安全隐患。
1976年,两位美国计算机学家Whitfield Diffie 和 Martin Hellman,提出了一种崭新构思,可以在不直接传递密钥的情况下,完成解密。这被称为"Diffie-Hellman密钥交换算法"。也正是因为这个算法的产生,人类终于可以实现非对称加密了:A给B发送信息
- B要先生成两把密钥(公钥和私钥)。公钥是公开的,任何人都可以获得,私钥则是保密的。
- A获取B的公钥,然后用它对信息加密。
- B得到加密后的信息,用私钥解密。
- 理论上如果公钥加密的信息只有私钥解得开,那么只要私钥不泄漏,通信就是安全的。
1977年,三位数学家Rivest、Shamir 和 Adleman 设计了一种算法,可以实现非对称加密。这种算法用他们三个人的名字命名,叫做RSA算法。从那时直到现在,RSA算法一直是最广为使用的"非对称加密算法"。毫不夸张地说,只要有计算机网络的地方,就有RSA算法。这种算法非常可靠,密钥越长,它就越难破解。根据已经披露的文献,目前被破解的最长RSA密钥是232个十进制位,也就是768个二进制位,因此可以认为,1024位的RSA密钥基本安全,2048位的密钥极其安全,当然量子计算机除外。
RSA算法的原理下面进入正题,解释RSA算法的原理,其实RSA算法并不难,只需要一点数论知识就可以理解。
- 素数:又称质数,指在一个大于1的自然数中,除了1和此整数自身外,不能被其他自然数整除的数。
- 互质,又称互素。若N个整数的最大公因子是1,则称这N个整数互质。
- 模运算即求余运算。“模”是“Mod”的音译。和模运算紧密相关的一个概念是“同余”。数学上,当两个整数除以同一个正整数,若得相同余数,则二整数同余。
任意给定正整数n,请问在小于等于n的正整数之中,有多少个与n构成互质关系?(比如,在1到8之中,有多少个数与8构成互质关系?)计算这个值的方法就叫做欧拉函数,以φ(n)表示。
- 计算8的欧拉函数,和8互质的 1、2、3、4、5、6、7、8
- φ(8) = 4
- 如果n是质数的某一个次方,即 n = p^k (p为质数,k为大于等于1的整数),则φ(n) = φ(p^k) = p^k - p^(k-1)。也就是φ(8) = φ(2^3) =2^3 - 2^2 = 8 -4 = 4
- 计算7的欧拉函数,和7互质的 1、2、3、4、5、6、7
- φ(7) = 6
- 如果n是质数,则 φ(n)=n-1 。因为质数与小于它的每一个数,都构成互质关系。比如5与1、2、3、4都构成互质关系。
- 计算56的欧拉函数
- φ(56) = φ(8) * φ(7) = 4 * 6 = 24
- 如果n可以分解成两个互质的整数之积,即 n = p * k ,则φ(n) = φ(p * k) = φ(p1)*φ(p2)
欧拉定理:如果两个正整数m和n互质,那么m的φ(n)次方减去1,可以被n整除。
欧拉定理
费马小定理:欧拉定理的特殊情况,如果两个正整数m和n互质,而且n为质数!那么φ(n)结果就是n-1。
费马小定理
模反元素
还剩下最后一个概念,模反元素:如果两个正整数e和x互质,那么一定可以找到整数d,使得 ed-1 被x整除,或者说ed被x除的余数是1。
那么d就是e相对于x的模反元素。
d是模反元素
等式转换
- 根据欧拉定理
等式转换1
- 由于1^k ≡ 1,等号左右两边都来个k次方
等式转换
- 由于1* m ≡ m,等号左右两边都乘上m
等式转换3
根据模反元素,因为e*d 一定是x的倍数加1。所以如下:
等式转换
通过多次的等式转换。终于可以将这两个等式进行合并了!如下:
最终等式转换
这个等式成立有一个前提!就是关于模反元素的,就是当整数e和φ(n)互质!一定有一个整数d是e相对于φ(n)的模反元素。
我们可以测试一下。
m取值为4
n取值为15
φ(n)取值为8
e 如果取值为3
d 可以为 11、19...(模反元素很明显不止一个,其实就是解二元一次方程)
如果你测试了,那么你可以改变m的值试一下,其实这个等式不需要m和n 互质。只要m小于n 等式依然成立。
这里需要注意的是,我们可以看做 m 通过一系列运算得到结果仍然是 m。这一系列运算中,分别出现了多个参数n、φ(n)、e还有d。
m 的 e乘上d 次方为加密运算,得到结果 c
c 模以 n 为解密运算,得到结果 m
这似乎可以用于加密和解密。但这样,加密的结果会非常大。明文数据将非常小(虽然RSA用于加密的数据也很小,但是没这么大悬殊),真正的RSA要更加强大,那么RSA是怎么演变来的呢??
早期很多数学家也停留在了这一步!直到1967年迪菲赫尔曼密钥交换打破了僵局!
迪菲赫尔曼密钥交换这个密钥交换当时轰动了整个数学界!而且对人类密码学的发展非常重要,因为这个伟大的算法能够拆分刚才的等式。当非对称加密算法没有出现以前,人类都是用的对称加密。所以密钥的传递,就必须要非常小心。
迪菲赫尔曼密钥交换 就是解决了密钥传递的保密性,我们来看一下
迪菲赫尔曼密钥交换
假设一个传递密钥的场景。算法就是用3 的次方去模以17。 三个角色
- 服务器 随机数 15
- 这个15只有服务器才知道。通过算法得到结果 6 因为 3的15次方 mod 17 = 6 。然后将结果 6 公开发送出去,拿到客户端的 12 ,然后用12^15 mod 17 得到结果10(10就是交换得到的密钥)
- 客户端 随机数13
- 客户端用3 的 13次方 mod 17 = 12 然后将得到的结果12公布出去。
- 拿到服务器的 6 ,然后用6^13 mod 17 得到结果10(10就是交换得到的密钥)
- 第三者
- 第三者只能拿到6 和 12 ,因为没有私密数据13、15,所以它没法得到结果10。
为什么 6的13次方会和12的15次方得到一样的结果呢?因为这就是规律,我们可以用小一点的数字测试一下3^3 mod 17 = 10和10 ^ 2 mod 17 ; 3 ^ 2 mod 17 = 9和9^3 mod 17结果都是15。迪菲赫尔曼密钥交换最核心的地方就在于这个规律
迪菲赫尔曼密钥交换转换
RSA的诞生RSA原理
现在我们知道了m^e % n = c是加密,c^d % n = m是解密,m就是原始数据,c是密文,公钥是n和e,私钥是n和d,所以只有n和e是公开的。加密时我们也要知道φ(n)的值,最简单的方式是用两个质数之积得到,别人想破解RSA也要知道φ(n)的值,只能对n进行因数分解,那么我们不想m被破解,n的值就要非常大,就是我们之前说的,长度一般为1024个二进制位,这样就很安全了。但是据说量子计算机(用于科研,尚未普及)可以破解,理论上量子计算机的运行速度无穷快,大家可以了解一下。
以上就是RSA的数学原理
检验RSA加密算法我们用终端命令演示下这个加密、解密过程。
假设m = 12(随便取值,只要比n小就OK),n = 15(还是随机取一个值),φ(n) = 8,e = 3(只要和φ(n)互质就可以),d = 19(3d - 1 = 8,d也可以为3 11等等,也就是d = (8k 1)/3 )
终端分别以m=12,7输入结果
终端演示
OpenSSL进行RSA的命令运行
Mac可以直接使用OpenSSL,首先进入相应文件夹
- 生成公私钥
// 生成RSA私钥,文件名为private.pem,长度为1024bit openssl genrsa -out private.pem 1024 // 从私钥中提取公钥 openssl rsa -in private.pem -pubout -out publick.pem
生成私钥
// 查看刚刚生成好的私钥 cat private.pem // 查看刚刚生成好的公钥 cat publick.pem
查看公私钥
我们可以看到base64编码,明显私钥二进制很大,公钥就小了很多。
这时候我们的文件夹内已经多了刚刚生成好的公私钥文件了
公私钥文件
// 将私钥转换为明文 openssl rsa -in private.pem -text -out private.txt
96111F25-0954-4854-9B36-75413A439AFD
里面就是P1、P2还有KEY等信息。
- 对文件进行加密、解密
到这里,大家都知道RSA通过数学算法来加密和解密,效率比较低,所以一般RSA的主战场是加密比较小的数据,比如对大数据进行对称加密,再用RSA给对称加密的KEY进行加密,或者加密Hash值,也就是数字签名。
希望能够帮助大家,也欢迎大家点赞留言交流
链接:https://www.jianshu.com/p/ad3d1dea63af