快捷搜索:  汽车  科技

谈谈数学家欧拉带来的启示(近代数学奠基者)

谈谈数学家欧拉带来的启示(近代数学奠基者)他在1735年定义了微分方程中的欧拉-马斯刻若尼常数,也是欧拉-麦克劳林求和公式的发现者之一,这一公式在计算难于计算的积分、求和与级数的时候极为有效:它成为指数函数的中心。在初等分析中,从本质上来说,要么是指数函数的变种,要么是多项式,两者必居其一。被理查德·费曼称为“最卓越的数学公式”的则是欧拉公式的一个简单推论(通常被称为欧拉恒等式):他还直接从牛顿运动定律出发,建立了流体力学里的欧拉方程。这些方程组在形式上等价于粘度为0的纳维-斯托克斯方程。人们对这些方程的主要兴趣在于它们能被用来研究冲击波。其中 ζ (s)是黎曼函数。其著名的欧拉公式,将虚数的幂定义为如下公式:

莱昂哈德·欧拉(Leonhard Euler 1707年4月15日-1783年9月18日) 是一位瑞士数学家和物理学家,近代数学先驱之一,他一生大部分时间在俄国和普鲁士度过。

欧拉在数学的多个领域,包括微积分和图论都做出过重大发现。他引进的许多数学术语和书写格式,例如函数的记法"f(x)"[1],一直沿用至今。此外,他还在力学、光学和天文学等学科有突出的贡献。

欧拉的数学符号引进和推广,并通过他的许多教科书广为流传。最为著名的,是他引进了“函数”的概念,并且第一个将函数的写为f(x),以表示一个以x为自变量的函数。他还介绍了三角函数现代符号,以e表记自然对数的底(现在也称作欧拉数),用希腊字母Σ表记累加和以i表示虚数单位。用希腊字母π来表示一个圆的周长和直径之比也由欧拉普及,但它并不是由他发明。

欧拉建立了弹性体的力矩定律:作用在弹性细长杆上的力矩正比于物质的弹性和通过质心轴和垂直于两者的截面的转动惯量。

他还直接从牛顿运动定律出发,建立了流体力学里的欧拉方程。这些方程组在形式上等价于粘度为0的纳维-斯托克斯方程。人们对这些方程的主要兴趣在于它们能被用来研究冲击波。

其中 ζ (s)是黎曼函数。

其著名的欧拉公式,将虚数的幂定义为如下公式:

谈谈数学家欧拉带来的启示(近代数学奠基者)(1)

它成为指数函数的中心。在初等分析中,从本质上来说,要么是指数函数的变种,要么是多项式,两者必居其一。被理查德·费曼称为“最卓越的数学公式”的则是欧拉公式的一个简单推论(通常被称为欧拉恒等式):

谈谈数学家欧拉带来的启示(近代数学奠基者)(2)

他在1735年定义了微分方程中的欧拉-马斯刻若尼常数,也是欧拉-麦克劳林求和公式的发现者之一,这一公式在计算难于计算的积分、求和与级数的时候极为有效:

谈谈数学家欧拉带来的启示(近代数学奠基者)(3)

欧拉还发现了公式的 V - e f = 2 的数量与顶点(Vertex V),边(edge e)和面(face f)的凸多面体,因此,对一个平面图形。此公式中的常数是现在被称为欧拉示性数的图形(或其他数学对象),是有关属的对象。研究和推广这一公式,特别是通过柯西和欧莱雅Huillier,是在原点的拓扑结构。

欧拉在1736年解决了柯尼斯堡七桥问题,并且发表了论文《关于位置几何问题的解法》(Solutio problematis ad geometriam situs pertinentis),对一笔画问题进行了阐述,是最早运用图论和拓扑学的典范。

在1739年,欧拉写下了《音乐新理论的尝试(Tentamen novae theoriae musicae)》,书中试图把数学和音乐结合起来。一位传记作家写道:这是一部“为精通数学的音乐家和精通音乐的数学家而写的”著作。

在经济学方面,欧拉证明,如果产品的每个要素正好用于支付它自身的边际产量,在固定规模报酬的情形下,总收入和产出将完全耗尽。

在几何学和代数拓扑学方面,欧拉公式给出了单连通多面体的边、顶点和面之间存在的关系:

F-E V=2

其中,F为给定多面体的面数之和,E为边数之和,V为顶点数之和。这个定理也可用于平面图。对非平面图,欧拉公式可以推广为:如果一个图可以被嵌入一个流形 M,则:

谈谈数学家欧拉带来的启示(近代数学奠基者)(4)

其中χ为此流形的欧拉示性数,在流形的连续变形下是不变量。单连通流形(例如球面或平面)的欧拉特征值是2。对任意的平面图,欧拉公式可以推广为:F-E V-C=1,其中 C为图中连通分支数。

数独是欧拉发明的拉丁方的概念,在当时并不流行,直到20世纪由日本上班族锻治真起带起流行。

欧拉是第六系列瑞士10法郎的钞票以及德国、俄罗斯邮票的主角。在2002年,小行星2002被命名为欧拉。基督教新教-路德教派将圣徒日历上五月二十四日定为纪念欧拉的日子。欧拉是一位虔诚的基督教徒,相信圣经是正确而没有错误的,并且极力地反对那些拥有无神论思想的人们。

日内瓦大学在智利拉西拉天文台建立的口径1.2米望远镜命名为莱昂哈德·欧拉望远镜[16]。

2013年4月15日Google以doodle纪念欧拉306周年诞辰,展示了欧拉角、欧拉公式、欧拉恒等式、欧拉示性数和七桥问题等。[17]

猜您喜欢: