快捷搜索:  汽车  科技

pygame基础入门教程(Pygame实战方块连接世界)

pygame基础入门教程(Pygame实战方块连接世界)​于是——今天木木子带大家一起编写的Python 1.0初级版本《我的世界》就要隆重出场了,期不期待吖~​至少我作为一个没玩过的人来说确实是很牛逼了~​至少我做不来哈哈哈!这游戏看着怪好玩儿的撒,小编没忍住,毕竟长假嘛,怎得找点儿事情可做!

导语

《我的世界》是一款自由度极高的游戏,每个新存档的开启,就像是作为造物主的玩家在虚拟空间开辟了一个全新的宇宙。

pygame基础入门教程(Pygame实战方块连接世界)(1)

​​

方块连接世界,云游大好河山。

国庆不是回家了一趟吗?隔壁家的小胖墩在跟家里的小孩子一起玩手机,一起下载 了这款《我的世界》的游戏,玩儿的可是非常起劲儿了,建房子打怪,别说那房子的模型着实蛮惊艳的哈!

pygame基础入门教程(Pygame实战方块连接世界)(2)

至少我作为一个没玩过的人来说确实是很牛逼了~

​至少我做不来哈哈哈!这游戏看着怪好玩儿的撒,小编没忍住,毕竟长假嘛,怎得找点儿事情可做!

于是——今天木木子带大家一起编写的Python 1.0初级版本《我的世界》就要隆重出场了,期不期待吖~

正文

(1)《我是世界》游戏规则。

移动—前进:W,后退:S,向左:A,向右:D,环顾四周:鼠标,跳起:空格键,切换飞行模式:Tab。

选择建筑材料—砖:1,草:2,沙子:3,删除建筑:鼠标左键单击,创建建筑块:鼠标右键单击。

ESC退出程序。

(2)主要程序代码。

''' 主题: 我的世界1.0版本 ''' from __future__ import division import sys import math import random import time from collections import deque from pyglet import image from pyglet.gl import * from pyglet.graphics import TextureGroup from pyglet.window import key mouse TICKS_PER_SEC = 60 # Size of SECTORs used to ease block loading. SECTOR_SIZE = 16 WALKING_SPEED = 5 FLYING_SPEED = 15 GRAVITY = 20.0 MAX_JUMP_HEIGHT = 1.0 # About the height of a block. # To derive the formula for calculating jump speed first solve # v_t = v_0 a * t # for the time at which you achieve maximum height where a is the acceleration # due to gravity and v_t = 0. This gives: # t = - v_0 / a # Use t and the desired MAX_JUMP_HEIGHT to solve for v_0 (jump speed) in # s = s_0 v_0 * t (a * t^2) / 2 JUMP_SPEED = math.sqrt(2 * GRAVITY * MAX_JUMP_HEIGHT) TERMINAL_VELOCITY = 50 PLAYER_HEIGHT = 2 if sys.version_info[0] >= 3: xrange = range def cube_vertices(x y z n): """ Return the vertices of the cube at position x y z with size 2*n. """ return [ x-n y n z-n x-n y n z n x n y n z n x n y n z-n # top x-n y-n z-n x n y-n z-n x n y-n z n x-n y-n z n # bottom x-n y-n z-n x-n y-n z n x-n y n z n x-n y n z-n # left x n y-n z n x n y-n z-n x n y n z-n x n y n z n # right x-n y-n z n x n y-n z n x n y n z n x-n y n z n # front x n y-n z-n x-n y-n z-n x-n y n z-n x n y n z-n # back ] def tex_coord(x y n=4): """ Return the bounding vertices of the texture square. """ m = 1.0 / n dx = x * m dy = y * m return dx dy dx m dy dx m dy m dx dy m def tex_coords(top bottom side): """ Return a list of the texture squares for the top bottom and side. """ top = tex_coord(*top) bottom = tex_coord(*bottom) side = tex_coord(*side) result = [] result.extend(top) result.extend(bottom) result.extend(side * 4) return result TEXTURE_PATH = 'texture.png' GRASS = tex_coords((1 0) (0 1) (0 0)) SAND = tex_coords((1 1) (1 1) (1 1)) BRICK = tex_coords((2 0) (2 0) (2 0)) STONE = tex_coords((2 1) (2 1) (2 1)) FACES = [ ( 0 1 0) ( 0 -1 0) (-1 0 0) ( 1 0 0) ( 0 0 1) ( 0 0 -1) ] def normalize(position): """ Accepts `position` of arbitrary precision and returns the block containing that position. Parameters ---------- position : tuple of len 3 Returns ------- block_position : tuple of ints of len 3 """ x y z = position x y z = (int(round(x)) int(round(y)) int(round(z))) return (x y z) def sectorize(position): """ Returns a tuple representing the sector for the given `position`. Parameters ---------- position : tuple of len 3 Returns ------- sector : tuple of len 3 """ x y z = normalize(position) x y z = x // SECTOR_SIZE y // SECTOR_SIZE z // SECTOR_SIZE return (x 0 z) class Model(object): def __init__(self): # A Batch is a collection of vertex lists for batched rendering. self.batch = pyglet.graphics.Batch() # A TextureGroup manages an OpenGL texture. self.group = TextureGroup(image.load(TEXTURE_PATH).get_texture()) # A mapping from position to the texture of the block at that position. # This defines all the blocks that are currently in the world. self.world = {} # Same mapping as `world` but only contains blocks that are shown. self.shown = {} # Mapping from position to a pyglet `VertextList` for all shown blocks. self._shown = {} # Mapping from sector to a list of positions inside that sector. self.sectors = {} # Simple function queue implementation. The queue is populated with # _show_block() and _hide_block() calls self.queue = deque() self._initialize() def _initialize(self): """ Initialize the world by placing all the blocks. """ n = 80 # 1/2 width and height of world s = 1 # step size y = 0 # initial y height for x in xrange(-n n 1 s): for z in xrange(-n n 1 s): # create a layer stone an grass everywhere. self.add_block((x y - 2 z) GRASS immediate=False) self.add_block((x y - 3 z) STONE immediate=False) if x in (-n n) or z in (-n n): # create outer walls. for dy in xrange(-2 3): self.add_block((x y dy z) STONE immediate=False) # generate the hills randomly o = n - 10 for _ in xrange(120): a = random.randint(-o o) # x position of the hill b = random.randint(-o o) # z position of the hill c = -1 # base of the hill h = random.randint(1 6) # height of the hill s = random.randint(4 8) # 2 * s is the side length of the hill d = 1 # how quickly to taper off the hills t = random.choice([GRASS SAND BRICK]) for y in xrange(c c h): for x in xrange(a - s a s 1): for z in xrange(b - s b s 1): if (x - a) ** 2 (z - b) ** 2 > (s 1) ** 2: continue if (x - 0) ** 2 (z - 0) ** 2 < 5 ** 2: continue self.add_block((x y z) t immediate=False) s -= d # decrement side lenth so hills taper off def hit_test(self position vector max_distance=8): """ Line of sight search from current position. If a block is intersected it is returned along with the block previously in the line of sight. If no block is found return None None. Parameters ---------- position : tuple of len 3 The (x y z) position to check visibility from. vector : tuple of len 3 The line of sight vector. max_distance : int How many blocks away to search for a hit. """ m = 8 x y z = position dx dy dz = vector previous = None for _ in xrange(max_distance * m): key = normalize((x y z)) if key != previous and key in self.world: return key previous previous = key x y z = x dx / m y dy / m z dz / m return None None def exposed(self position): """ Returns False is given `position` is surrounded on all 6 sides by blocks True otherwise. """ x y z = position for dx dy dz in FACES: if (x dx y dy z dz) not in self.world: return True return False def add_block(self position texture immediate=True): """ Add a block with the given `texture` and `position` to the world. Parameters ---------- position : tuple of len 3 The (x y z) position of the block to add. texture : list of len 3 The coordinates of the texture squares. Use `tex_coords()` to generate. immediate : bool Whether or not to draw the block immediately. """ if position in self.world: self.remove_block(position immediate) self.world[position] = texture self.sectors.setdefault(sectorize(position) []).append(position) if immediate: if self.exposed(position): self.show_block(position) self.check_neighbors(position) def remove_block(self position immediate=True): """ Remove the block at the given `position`. Parameters ---------- position : tuple of len 3 The (x y z) position of the block to remove. immediate : bool Whether or not to immediately remove block from canvas. """ del self.world[position] self.sectors[sectorize(position)].remove(position) if immediate: if position in self.shown: self.hide_block(position) self.check_neighbors(position) def check_neighbors(self position): """ Check all blocks surrounding `position` and ensure their visual state is current. This means hiding blocks that are not exposed and ensuring that all exposed blocks are shown. Usually used after a block is added or removed. """ x y z = position for dx dy dz in FACES: key = (x dx y dy z dz) if key not in self.world: continue if self.exposed(key): if key not in self.shown: self.show_block(key) else: if key in self.shown: self.hide_block(key) def show_block(self position immediate=True): """ Show the block at the given `position`. This method assumes the block has already been added with add_block() Parameters ---------- position : tuple of len 3 The (x y z) position of the block to show. immediate : bool Whether or not to show the block immediately. """ texture = self.world[position] self.shown[position] = texture if immediate: self._show_block(position texture) else: self._enqueue(self._show_block position texture) def _show_block(self position texture): """ Private implementation of the `show_block()` method. Parameters ---------- position : tuple of len 3 The (x y z) position of the block to show. texture : list of len 3 The coordinates of the texture squares. Use `tex_coords()` to generate. """ x y z = position vertex_data = cube_vertices(x y z 0.5) texture_data = list(texture) # create vertex list # FIXME Maybe `add_indexed()` should be used instead self._shown[position] = self.batch.add(24 GL_QUADS self.group ('v3f/static' vertex_data) ('t2f/static' texture_data)) def hide_block(self position immediate=True): """ Hide the block at the given `position`. Hiding does not remove the block from the world. Parameters ---------- position : tuple of len 3 The (x y z) position of the block to hide. immediate : bool Whether or not to immediately remove the block from the canvas. """ self.shown.pop(position) if immediate: self._hide_block(position) else: self._enqueue(self._hide_block position) def _hide_block(self position): """ Private implementation of the 'hide_block()` method. """ self._shown.pop(position).delete() def show_sector(self sector): """ Ensure all blocks in the given sector that should be shown are drawn to the canvas. """ for position in self.sectors.get(sector []): if position not in self.shown and self.exposed(position): self.show_block(position False) def hide_sector(self sector): """ Ensure all blocks in the given sector that should be hidden are removed from the canvas. """ for position in self.sectors.get(sector []): if position in self.shown: self.hide_block(position False) def change_sectors(self before after): """ Move from sector `before` to sector `after`. A sector is a contiguous x y sub-region of world. Sectors are used to speed up world rendering. """ before_set = set() after_set = set() pad = 4 for dx in xrange(-pad pad 1): for dy in [0]: # xrange(-pad pad 1): for dz in xrange(-pad pad 1): if dx ** 2 dy ** 2 dz ** 2 > (pad 1) ** 2: continue if before: x y z = before before_set.add((x dx y dy z dz)) if after: x y z = after after_set.add((x dx y dy z dz)) show = after_set - before_set hide = before_set - after_set for sector in show: self.show_sector(sector) for sector in hide: self.hide_sector(sector) def _enqueue(self func *args): """ Add `func` to the internal queue. """ self.queue.append((func args)) def _dequeue(self): """ Pop the top function from the internal queue and call it. """ func args = self.queue.popleft() func(*args) def process_queue(self): """ Process the entire queue while taking periodic breaks. This allows the game loop to run smoothly. The queue contains calls to _show_block() and _hide_block() so this method should be called if add_block() or remove_block() was called with immediate=False """ start = time.clock() while self.queue and time.clock() - start < 1.0 / TICKS_PER_SEC: self._dequeue() def process_entire_queue(self): """ Process the entire queue with no breaks. """ while self.queue: self._dequeue() class Window(pyglet.window.Window): def __init__(self *args **kwargs): super(Window self).__init__(*args **kwargs) # Whether or not the window exclusively captures the mouse. self.exclusive = False # When flying gravity has no effect and speed is increased. self.flying = False # Strafing is moving lateral to the direction you are facing # e.g. moving to the left or right while continuing to face forward. # # First element is -1 when moving forward 1 when moving back and 0 # otherwise. The second element is -1 when moving left 1 when moving # right and 0 otherwise. self.strafe = [0 0] # Current (x y z) position in the world specified with floats. Note # that perhaps unlike in math class the y-axis is the vertical axis. self.position = (0 0 0) # First element is rotation of the player in the x-z plane (ground # plane) measured from the z-axis down. The second is the rotation # angle from the ground plane up. Rotation is in degrees. # # The vertical plane rotation ranges from -90 (looking straight down) to # 90 (looking straight up). The horizontal rotation range is unbounded. self.rotation = (0 0) # Which sector the player is currently in. self.sector = None # The crosshairs at the center of the screen. self.reticle = None # Velocity in the y (upward) direction. self.dy = 0 # A list of blocks the player can place. Hit num keys to cycle. self.inventory = [BRICK GRASS SAND] # The current block the user can place. Hit num keys to cycle. self.block = self.inventory[0] # Convenience list of num keys. self.num_keys = [ key._1 key._2 key._3 key._4 key._5 key._6 key._7 key._8 key._9 key._0] # Instance of the model that handles the world. self.model = Model() # The label that is displayed in the top left of the canvas. self.label = pyglet.text.Label('' font_name='Arial' font_size=18 x=10 y=self.height - 10 anchor_x='left' anchor_y='top' color=(0 0 0 255)) # This call schedules the `update()` method to be called # TICKS_PER_SEC. This is the main game event loop. pyglet.clock.schedule_interval(self.update 1.0 / TICKS_PER_SEC) def set_exclusive_mouse(self exclusive): """ If `exclusive` is True the game will capture the mouse if False the game will ignore the mouse. """ super(Window self).set_exclusive_mouse(exclusive) self.exclusive = exclusive def get_sight_vector(self): """ Returns the current line of sight vector indicating the direction the player is looking. """ x y = self.rotation # y ranges from -90 to 90 or -pi/2 to pi/2 so m ranges from 0 to 1 and # is 1 when looking ahead parallel to the ground and 0 when looking # straight up or down. m = math.cos(math.radians(y)) # dy ranges from -1 to 1 and is -1 when looking straight down and 1 when # looking straight up. dy = math.sin(math.radians(y)) dx = math.cos(math.radians(x - 90)) * m dz = math.sin(math.radians(x - 90)) * m return (dx dy dz) def get_motion_vector(self): """ Returns the current motion vector indicating the velocity of the player. Returns ------- vector : tuple of len 3 Tuple containing the velocity in x y and z respectively. """ if any(self.strafe): x y = self.rotation strafe = math.degrees(math.atan2(*self.strafe)) y_angle = math.radians(y) x_angle = math.radians(x strafe) if self.flying: m = math.cos(y_angle) dy = math.sin(y_angle) if self.strafe[1]: # Moving left or right. dy = 0.0 m = 1 if self.strafe[0] > 0: # Moving backwards. dy *= -1 # When you are flying up or down you have less left and right # motion. dx = math.cos(x_angle) * m dz = math.sin(x_angle) * m else: dy = 0.0 dx = math.cos(x_angle) dz = math.sin(x_angle) else: dy = 0.0 dx = 0.0 dz = 0.0 return (dx dy dz) def update(self dt): """ This method is scheduled to be called repeatedly by the pyglet clock. Parameters ---------- dt : float The change in time since the last call. """ self.model.process_queue() sector = sectorize(self.position) if sector != self.sector: self.model.change_sectors(self.sector sector) if self.sector is None: self.model.process_entire_queue() self.sector = sector m = 8 dt = min(dt 0.2) for _ in xrange(m): self._update(dt / m) def _update(self dt): """ Private implementation of the `update()` method. This is where most of the motion logic lives along with gravity and collision detection. Parameters ---------- dt : float The change in time since the last call. """ # walking speed = FLYING_SPEED if self.flying else WALKING_SPEED d = dt * speed # distance covered this tick. dx dy dz = self.get_motion_vector() # New position in space before accounting for gravity. dx dy dz = dx * d dy * d dz * d # gravity if not self.flying: # Update your vertical speed: if you are falling speed up until you # hit terminal velocity; if you are jumping slow down until you # start falling. self.dy -= dt * GRAVITY self.dy = max(self.dy -TERMINAL_VELOCITY) dy = self.dy * dt # collisions x y z = self.position x y z = self.collide((x dx y dy z dz) PLAYER_HEIGHT) self.position = (x y z) def collide(self position height): """ Checks to see if the player at the given `position` and `height` is colliding with any blocks in the world. Parameters ---------- position : tuple of len 3 The (x y z) position to check for collisions at. height : int or float The height of the player. Returns ------- position : tuple of len 3 The new position of the player taking into account collisions. """ # How much overlap with a dimension of a surrounding block you need to # have to count as a collision. If 0 touching terrain at all counts as # a collision. If .49 you sink into the ground as if walking through # tall grass. If >= .5 you'll fall through the ground. pad = 0.25 p = list(position) np = normalize(position) for face in FACES: # check all surrounding blocks for i in xrange(3): # check each dimension independently if not face[i]: continue # How much overlap you have with this dimension. d = (p[i] - np[i]) * face[i] if d < pad: continue for dy in xrange(height): # check each height op = list(np) op[1] -= dy op[i] = face[i] if tuple(op) not in self.model.world: continue p[i] -= (d - pad) * face[i] if face == (0 -1 0) or face == (0 1 0): # You are colliding with the ground or ceiling so stop # falling / rising. self.dy = 0 break return tuple(p) def on_mouse_press(self x y button modifiers): """ Called when a mouse button is pressed. See pyglet docs for button amd modifier mappings. Parameters ---------- x y : int The coordinates of the mouse click. Always center of the screen if the mouse is captured. button : int Number representing mouse button that was clicked. 1 = left button 4 = right button. modifiers : int Number representing any modifying keys that were pressed when the mouse button was clicked. """ if self.exclusive: vector = self.get_sight_vector() block previous = self.model.hit_test(self.position vector) if (button == mouse.RIGHT) or \ ((button == mouse.LEFT) and (modifiers & key.MOD_CTRL)): # ON OSX control left click = right click. if previous: self.model.add_block(previous self.block) elif button == pyglet.window.mouse.LEFT and block: texture = self.model.world[block] if texture != STONE: self.model.remove_block(block) else: self.set_exclusive_mouse(True) def on_mouse_motion(self x y dx dy): """ Called when the player moves the mouse. Parameters ---------- x y : int The coordinates of the mouse click. Always center of the screen if the mouse is captured. dx dy : float The movement of the mouse. """ if self.exclusive: m = 0.15 x y = self.rotation x y = x dx * m y dy * m y = max(-90 min(90 y)) self.rotation = (x y) def on_key_press(self symbol modifiers): """ Called when the player presses a key. See pyglet docs for key mappings. Parameters ---------- symbol : int Number representing the key that was pressed. modifiers : int Number representing any modifying keys that were pressed. """ if symbol == key.W: self.strafe[0] -= 1 elif symbol == key.S: self.strafe[0] = 1 elif symbol == key.A: self.strafe[1] -= 1 elif symbol == key.D: self.strafe[1] = 1 elif symbol == key.SPACE: if self.dy == 0: self.dy = JUMP_SPEED elif symbol == key.ESCAPE: self.set_exclusive_mouse(False) elif symbol == key.TAB: self.flying = not self.flying elif symbol in self.num_keys: index = (symbol - self.num_keys[0]) % len(self.inventory) self.block = self.inventory[index] def on_key_release(self symbol modifiers): """ Called when the player releases a key. See pyglet docs for key mappings. Parameters ---------- symbol : int Number representing the key that was pressed. modifiers : int Number representing any modifying keys that were pressed. """ if symbol == key.W: self.strafe[0] = 1 elif symbol == key.S: self.strafe[0] -= 1 elif symbol == key.A: self.strafe[1] = 1 elif symbol == key.D: self.strafe[1] -= 1 def on_resize(self width height): """ Called when the window is resized to a new `width` and `height`. """ # label self.label.y = height - 10 # reticle if self.reticle: self.reticle.delete() x y = self.width // 2 self.height // 2 n = 10 self.reticle = pyglet.graphics.vertex_list(4 ('v2i' (x - n y x n y x y - n x y n)) ) def set_2d(self): """ Configure OpenGL to draw in 2d. """ width height = self.get_size() glDisable(GL_DEPTH_TEST) viewport = self.get_viewport_size() glViewport(0 0 max(1 viewport[0]) max(1 viewport[1])) glMatrixMode(GL_PROJECTION) glLoadIdentity() glOrtho(0 max(1 width) 0 max(1 height) -1 1) glMatrixMode(GL_MODELVIEW) glLoadIdentity() def set_3d(self): """ Configure OpenGL to draw in 3d. """ width height = self.get_size() glEnable(GL_DEPTH_TEST) viewport = self.get_viewport_size() glViewport(0 0 max(1 viewport[0]) max(1 viewport[1])) glMatrixMode(GL_PROJECTION) glLoadIdentity() gluPerspective(65.0 width / float(height) 0.1 60.0) glMatrixMode(GL_MODELVIEW) glLoadIdentity() x y = self.rotation glRotatef(x 0 1 0) glRotatef(-y math.cos(math.radians(x)) 0 math.sin(math.radians(x))) x y z = self.position glTranslatef(-x -y -z) def on_draw(self): """ Called by pyglet to draw the canvas. """ self.clear() self.set_3d() glColor3d(1 1 1) self.model.batch.draw() self.draw_focused_block() self.set_2d() self.draw_label() self.draw_reticle() def draw_focused_block(self): """ Draw black edges around the block that is currently under the crosshairs. """ vector = self.get_sight_vector() block = self.model.hit_test(self.position vector)[0] if block: x y z = block vertex_data = cube_vertices(x y z 0.51) glColor3d(0 0 0) glPolygonMode(GL_FRONT_AND_BACK GL_LINE) pyglet.graphics.draw(24 GL_QUADS ('v3f/static' vertex_data)) glPolygonMode(GL_FRONT_AND_BACK GL_FILL) def draw_label(self): """ Draw the label in the top left of the screen. """ x y z = self.position self.label.text = 'd (%.2f %.2f %.2f) %d / %d' % ( pyglet.clock.get_fps() x y z len(self.model._shown) len(self.model.world)) self.label.draw() def draw_reticle(self): """ Draw the crosshairs in the center of the screen. """ glColor3d(0 0 0) self.reticle.draw(GL_LINES) def setup_fog(): """ Configure the OpenGL fog properties. """ # Enable fog. Fog "blends a fog color with each rasterized pixel fragment's # post-texturing color." glEnable(GL_FOG) # Set the fog color. glFogfv(GL_FOG_COLOR (GLfloat * 4)(0.5 0.69 1.0 1)) # Say we have no preference between rendering speed and quality. glHint(GL_FOG_HINT GL_DONT_CARE) # Specify the equation used to compute the blending factor. glFogi(GL_FOG_MODE GL_LINEAR) # How close and far away fog starts and ends. The closer the start and end # the denser the fog in the fog range. glFogf(GL_FOG_START 20.0) glFogf(GL_FOG_END 60.0) def setup(): """ Basic OpenGL configuration. """ # Set the color of "clear" i.e. the sky in rgba. glClearColor(0.5 0.69 1.0 1) # Enable culling (not rendering) of back-facing facets -- facets that aren't # visible to you. glEnable(GL_CULL_FACE) # Set the texture minification/magnification function to GL_NEAREST (nearest # in Manhattan distance) to the specified texture coordinates. GL_NEAREST # "is generally faster than GL_LINEAR but it can produce textured 图片 # with sharper edges because the transition between texture elements is not # as smooth." glTexParameteri(GL_TEXTURE_2D GL_TEXTURE_MIN_FILTER GL_NEAREST) glTexParameteri(GL_TEXTURE_2D GL_TEXTURE_MAG_FILTER GL_NEAREST) setup_fog() def main(): window = Window(width=1800 height=1600 caption='Pyglet' resizable=True) # Hide the mouse cursor and prevent the mouse from leaving the window. window.set_exclusive_mouse(True) setup() pyglet.app.run() if __name__ == '__main__': main()(3)效果图如下。​

正常的截图:

pygame基础入门教程(Pygame实战方块连接世界)(3)

pygame基础入门教程(Pygame实战方块连接世界)(4)

飞行模式下的截图:在天上越飞越远!幸好我手速比较快,不然看不到这截图了!

pygame基础入门教程(Pygame实战方块连接世界)(5)

pygame基础入门教程(Pygame实战方块连接世界)(6)

​总结

总的来说这初级版本的话很多毛病的哈!哈哈哈哈~大家拿到代码了可以自己修改修改哦~

等一个大佬优化这款Python的我的世界!

pygame基础入门教程(Pygame实战方块连接世界)(7)

完整的免费源码领取处:

如需完整的项目源码 素材源码基地见:#私信小编06#即可获取免费的福利!

你们的支持是我最大的动力!!记得三连哦~mua 欢迎大家阅读往期的文章哦~

往期热门游戏文章推荐阅读——

1.9 Pygame实战:慎点|虐单身狗的最高境界是…【附源码】

2.0Pygame实战:利用Python实现智能五子棋,实现之后发现我玩不赢它!

1.2 Pygame实战:据说这是史上最难扫雷游戏,没有之一!你们感受下......

1.3 Pygame实战:对象突然想玩坦克大战,我用Python三十分钟实现!看!他开心得像个孩子!

文章汇总——

1.1Python—2021 |已有文章汇总 | 持续更新,直接看这篇就够了~

pygame基础入门教程(Pygame实战方块连接世界)(8)

猜您喜欢: