快捷搜索:  汽车  科技

2022年诺贝尔奖量子力学通俗解释(2022年诺贝尔物理学奖由三位科学家分享)

2022年诺贝尔奖量子力学通俗解释(2022年诺贝尔物理学奖由三位科学家分享)1969年至1996年,他主要在劳伦斯伯克利国家实验室、劳伦斯利弗莫尔国家实验室和加州大学伯克利分校工作。1972 年,他与 Stuart Freedman 合作,对 CHSH-Bell 定理预测进行了第一次实验测试。这是世界上第一次观察到量子纠缠,也是第一次对违反贝尔不等式的实验观察。John Clauser,1942年出生于加利福尼亚州帕萨迪纳市。1964年,他获得了加州理工学院物理学学士学位,两年后获得物理学硕士学位,并在1969 年获得哥伦比亚大学物理学博士学位。接着,让我们再来了解一下今年三位获奖的科学家:Alain Aspect,1947年6月出生于法国西南部阿基坦地区的阿根镇。他毕业于法国的一所地区性大学奥赛大学(Université d’Orsay)。自1969年开始,作为国家服务的一部分,他在非洲的喀麦隆教了三年书。1983年,他获得奥赛大学博士学位。攻读博士学位期间,他

2022年诺贝尔奖量子力学通俗解释(2022年诺贝尔物理学奖由三位科学家分享)(1)

瑞典皇家科学院4日宣布,将2022年诺贝尔物理学奖授予法国科学家阿兰·阿斯佩(Alain Aspect)、美国科学家约翰·克劳泽(John F.Clauser)和奥地利科学家安东·蔡林格(Anton Zeilinger),以表彰他们在“纠缠光子实验、验证违反贝尔不等式和开创量子信息科学”方面所做出的贡献。

2022年诺贝尔奖量子力学通俗解释(2022年诺贝尔物理学奖由三位科学家分享)(2)

Johan Jarnestad/The Royal Swedish Academy of Sciences 图片来源:诺奖官网

诺贝尔奖官网发布的新闻公报称,量子力学正开始得到应用。量子计算机、量子网络和安全的量子加密通信已经成为很大的研究领域。而这一发展的一个关键因素是量子力学如何允许两个或多个粒子以纠缠态存在。纠缠粒子对中的一个粒子的状态,决定了另一个粒子的状态,即使这两个粒子相距很远。

Alain Aspect、John Clauser 和 Anton Zeilinger 各自使用“两个粒子即使在分离时也表现得像一个单元”的纠缠量子态,进行了开创性实验。他们的实验结果为基于量子信息的新技术扫清了障碍。

接着,让我们再来了解一下今年三位获奖的科学家:

Alain Aspect,1947年6月出生于法国西南部阿基坦地区的阿根镇。他毕业于法国的一所地区性大学奥赛大学(Université d’Orsay)。自1969年开始,作为国家服务的一部分,他在非洲的喀麦隆教了三年书。1983年,他获得奥赛大学博士学位。

攻读博士学位期间,他完成了一项重要工作。他带领团队进行的实验证实了贝尔定理的正确性,也就是当两个粒子分开任意大的距离时,“远距离的幽灵作用”,在现实中似乎已经实现了:两个粒子的波函数之间的相关性仍然存在,因为它们曾经是相同波函数的一部分,而在测量其中一个粒子之前是没有受到干扰的。

John Clauser,1942年出生于加利福尼亚州帕萨迪纳市。1964年,他获得了加州理工学院物理学学士学位,两年后获得物理学硕士学位,并在1969 年获得哥伦比亚大学物理学博士学位。

1969年至1996年,他主要在劳伦斯伯克利国家实验室、劳伦斯利弗莫尔国家实验室和加州大学伯克利分校工作。1972 年,他与 Stuart Freedman 合作,对 CHSH-Bell 定理预测进行了第一次实验测试。这是世界上第一次观察到量子纠缠,也是第一次对违反贝尔不等式的实验观察。

1974 年,他与Michael Horne合作,首次显示贝尔定理的推广为所有局部现实的自然理论(又名客观局部理论)提供了严格的约束。这项工作引入了 Clauser-Horne(CH)不等式,作为由局部现实主义设定的第一个完全通用的实验要求。它还引入了 “CH 无增强假设”,从而将 CH 不等式简化为 CHSH 不等式,因此相关的实验测试也约束了局部真实性。

同样在 1974 年,他首次观察到光的亚泊松统计(通过违反经典电磁场的柯西-施瓦茨不等式),从而首次证明了光子的明确粒子状特征。1976 年,他进行了世界上第二次对 CHSH-Bell 定理预测的实验检验。

Anton Zeilinger是维也纳大学物理学名誉教授,奥地利科学院量子光学与量子信息研究所高级科学家。他也曾任奥地利物理学会主席,现任奥地利科学院院长。Zeilinger1945年出生于奥地利,1971年在维也纳大学获得博士学位。

他以纠缠方面的实验和理论工作而闻名,最著名的是多粒子纠缠态的实现、量子隐形传态、量子通信和密码学、光子量子计算以及从中子到富勒烯的物质波干涉测量,后者研究退相干和量子-经典转变的细节。

1997年,他和同事首次完成了量子隐形传态的原理性实验验证,成为量子信息实验领域的开山之作。量子隐形传态是从一个粒子向另一个粒子远距离传递未知量子态的方式,这一过程不需要传递粒子本身。潘建伟教授也是这一个实验的重要参与者之一。

量子隐形传态妙就妙在:你并不测量要传输的初态,你仅仅只是利用了纠缠。借助量子纠缠,我们可以将未知的量子态传输到遥远的地点。

在最初的实验中,Zeilinger组所实现的传输距离很短。后来,他们又完成了跨越多瑙河的量子隐形传态实验,以及非洲加那利群岛之间的远距离纠缠和隐形传态实验。岛屿之间的距离是百公里左右,在很长时间内这都是纠缠分发的最长纪录。现在,这个距离被我们熟知的 “墨子号” 量子卫星超过了。

Zeilinger的主要研究兴趣是量子力学的基础实验,重点是量子纠缠、量子干涉测量和量子信息。他特别关注的是新的纠缠态及其在量子通信和量子计算中的应用。 他目前的兴趣还包括很高维度和复杂性的纠缠轨道角动量态,实现爱因斯坦、波多尔斯基和罗森提出的动量和位置纠缠态,实现基于不可区分性和远距离量子通信的新型量子成像的想法。

和团队成员一起,Zeilinger开发了纠缠光子的源,观察了三光子和四光子纠缠以及高维量子态的纠缠。这些方法曾经并且正在被应用于量子通信任务的实现,例如超密集编码、基于纠缠的量子密码学、量子隐形传态和纠缠交换、纠缠态的隐形传态。

编辑:姜澎 储舒婷

猜您喜欢: