数学代数式求值竞赛题(英国数学竞赛题)
数学代数式求值竞赛题(英国数学竞赛题)=s² 3t²,代入刚才得到t²的表达式,即得到,(s t)² (s-t)²-(s t)(s-t)3s² t²=3,由平方数的非负性,很容易得到,S的取值范围,即有0≤s²≤1,再次对上面的式子移项得到,3t²=9-9s²,其实我们再将参数设定方程代入到所求代数式中去 ,即得到,
题一、
已知:a² b² ab=3,求:a² b²-ab的最值
分析题目
分析题目,像这种题目,解法很多,我们可以利用一元二次方程根的判别式来求解,也可以直接不等式放缩求解。据此分析我们最有效的方式当然是双换元,然后利用平方数的非负性直接来求解,简单直接。
令a=s t b=s-t则代入到已知条件中转换得到,
(s t)² (s-t)² (s t)(s-t)=3,展开后化简整理得到,
3s² t²=3,由平方数的非负性,很容易得到,S的取值范围,即有
0≤s²≤1,再次对上面的式子移项得到,
3t²=9-9s²,其实我们再将参数设定方程代入到所求代数式中去 ,即得到,
(s t)² (s-t)²-(s t)(s-t)
=s² 3t²,代入刚才得到t²的表达式,即得到,
=s² 9-9s²,整理得到,
=-8s² 9,结合之前已经确定的s的取值范围0≤s²≤1
所以1≤-8s² 9≤9,此时我们就很容求得所求代数式的最值了。
参考答案
#把地球的故事讲给宇宙#