纳什均衡与博弈论讲得太透彻了(博弈论纳什均衡)
纳什均衡与博弈论讲得太透彻了(博弈论纳什均衡)因此,纳什均衡的意思是:任何一方采取的策略都是对其余所有方采取策略组合下的最佳对策;当所有其他人都不改变策略时,为了让自己的收益最大,任何一方都不会(或者无法)改变自己的策略,这个时候的策略组合就是一个纳什均衡。纳什证明了在每个参与者都只有有限种策略选择、并允许混合策略的前提下,纳什均衡一定存在。以两家公司的价格大战为例,纳什均衡意味着两败俱伤的可能:在对方不改变价格的条件下,既不能提价,否则会进一步丧失市场;也不能降价,因为会出现赔本甩卖。于是两家公司可以改变原先的利益格局,通过谈判寻求新的利益评估分摊方案,也就是Nash均衡。类似的推理当然也可以用到选举,群体之间的利益冲突,潜在战争爆发前的僵局,议会中的法案争执等。
纳什均衡的定义:在博弈G=﹛S1 … Sn:u1 …,un﹜中,如果由各个博弈方的各一个策略组成的某个策略组合(s1* …,sn*)中,任一博弈方i的策略si*,都是对其余博弈方策略的组合(s1* …s*i-1 s*i 1 …,sn*)的最佳对策,也即ui(s1* …s*i-1 si* s*i 1 …,sn*)≥ui(s1* …s*i-1 sij* s*i 1 …,sn*)对任意sij∈Si都成立,则称(s1* …,sn*)为G的一个纳什均衡。
注:经济学定义从字面上还是相对比较好理解的;这里稍微解释一下数学定义,博弈论也称Game Theory,一场博弈用G表示,Si表示博弈方i的策略,ui表示收益。
因此,纳什均衡的意思是:任何一方采取的策略都是对其余所有方采取策略组合下的最佳对策;当所有其他人都不改变策略时,为了让自己的收益最大,任何一方都不会(或者无法)改变自己的策略,这个时候的策略组合就是一个纳什均衡。纳什证明了在每个参与者都只有有限种策略选择、并允许混合策略的前提下,纳什均衡一定存在。以两家公司的价格大战为例,纳什均衡意味着两败俱伤的可能:在对方不改变价格的条件下,既不能提价,否则会进一步丧失市场;也不能降价,因为会出现赔本甩卖。于是两家公司可以改变原先的利益格局,通过谈判寻求新的利益评估分摊方案,也就是Nash均衡。类似的推理当然也可以用到选举,群体之间的利益冲突,潜在战争爆发前的僵局,议会中的法案争执等。