人工智能机器学习体系:支持大规模基于种群多智能体强化学习训练
人工智能机器学习体系:支持大规模基于种群多智能体强化学习训练团队长期致力于从理论算法、系统与应用三个层面入手,针对开放、真实、动态的多智能场景下的智能决策进行研究。理论团队核心成员在人工智能和机器学习顶会发表多智能体强化学习相关论文共计五十余篇,并获得过 CoRL 2020 最佳系统论文、AAMAS 2021 Blue Sky Track 最佳论文奖。系统方面,除了面向多智能体强化学习种群训练的系统 MALib,本团队研发 SMARTS、CityFlow、MAgent 等大规模智能体强化学习仿真引擎,累计在 Github 上获得了超过 2000 加星。此外,团队在游戏、自动驾驶、搜索与推荐等场景下具有强化学习技术的真实应用落地的经验。目前,我们的项目已经开源在 GitHub 上(https://github.com/sjtu-marl/malib),更多的功能正在积极开发中,欢迎使用并向我们提出宝贵的改进意见!同时如果有兴趣参与项目开发,欢迎联系我
与 PyMARL 在星际任务上的效率对比。
另一方面,我们比较关注的是训练过程的采样效率。我们也对比了与其他分布式强化学习框架的吞吐量对比,在多智体版本的 Atari 游戏上,MALib 在吞吐量和扩展性上都表现了不错的性能。
在星际及多智能体 Atari 任务上不同框架的吞吐量对比。
目前,我们的项目已经开源在 GitHub 上(https://github.com/sjtu-marl/malib),更多的功能正在积极开发中,欢迎使用并向我们提出宝贵的改进意见!同时如果有兴趣参与项目开发,欢迎联系我们!ying.wen@sjtu.edu.cn。
团队介绍
本项目由上海交通大学与伦敦大学学院(UCL)联合的多智能体强化学习研究团队开发。MALib 项目主要由上海交通大学温颖助理教授指导下进行开发,核心开发成员包括上海交通大学三年级博士生周铭,ACM 班大四本科生万梓煜,一年级博士生王翰竟,访问学者温睦宁,ACM 班大三本科生吴润哲,并得到上海交通大学张伟楠副教授和伦敦大学学院的杨耀东博士、汪军教授的联合指导。
团队长期致力于从理论算法、系统与应用三个层面入手,针对开放、真实、动态的多智能场景下的智能决策进行研究。理论团队核心成员在人工智能和机器学习顶会发表多智能体强化学习相关论文共计五十余篇,并获得过 CoRL 2020 最佳系统论文、AAMAS 2021 Blue Sky Track 最佳论文奖。系统方面,除了面向多智能体强化学习种群训练的系统 MALib,本团队研发 SMARTS、CityFlow、MAgent 等大规模智能体强化学习仿真引擎,累计在 Github 上获得了超过 2000 加星。此外,团队在游戏、自动驾驶、搜索与推荐等场景下具有强化学习技术的真实应用落地的经验。