内核和驱动学习方法(内核驱动mmapHandler利用技术)
内核和驱动学习方法(内核驱动mmapHandler利用技术)int(*iterate) (struct file * struct dir_context *);ssize_t(*write_iter) (struct kiocb * struct iov_iter *);ssize_t(*read) (struct file * char __user * size_t loff_t *);ssize_t(*write) (struct file * const char __user * size_t loff_t *);ssize_t(*read_iter) (struct kiocb * struct iov_iter *);
1. 内核驱动简介在实现Linux内核驱动中,开发者可以注册一个设备驱动文件,该文件常常在/dev/目录下完成注册。该文件可以支持所有的常规文件方法,比如opening reading writing mmaping closing等等。设备驱动文件支持的操作由包含了一组函数指针的结构体file_operations描述,每个指针描述一个操作。在4.9版本内核中可以找到如下的定义。
struct file_operations {
struct module *owner;
loff_t(*llseek) (struct file * loff_t int);
ssize_t(*read) (struct file * char __user * size_t loff_t *);
ssize_t(*write) (struct file * const char __user * size_t loff_t *);
ssize_t(*read_iter) (struct kiocb * struct iov_iter *);
ssize_t(*write_iter) (struct kiocb * struct iov_iter *);
int(*iterate) (struct file * struct dir_context *);
int(*iterate_shared) (struct file * struct dir_context *);
unsigned int(*poll) (struct file * struct poll_table_struct *);
long(*unlocked_ioctl) (struct file * unsigned int unsigned long);
long(*compat_ioctl) (struct file * unsigned int unsigned long);
int(*mmap) (struct file * struct vm_area_struct *);
int(*open) (struct inode * struct file *);
int(*flush) (struct file * fl_owner_t id);
int(*release) (struct inode * struct file *);
int(*fsync) (struct file * loff_t loff_t int datasync);
int(*fasync) (int struct file * int);
int(*lock) (struct file * int struct file_lock *);
ssize_t(*sendpage) (struct file * struct page * int size_t loff_t * int);
unsigned long(*get_unmapped_area)(struct file * unsigned long unsigned long unsigned long unsigned long);
int(*check_flags)(int); int(*flock) (struct file * int struct file_lock *);
ssize_t(*splice_write)(struct pipe_inode_info * struct file * loff_t * size_t unsigned int);
ssize_t(*splice_read)(struct file * loff_t * struct pipe_inode_info * size_t unsigned int);
int(*setlease)(struct file * long struct file_lock ** void **);
long(*fallocate)(struct file *file int mode loff_t offset loff_t len);
void(*show_fdinfo)(struct seq_file *m struct file *f);
#ifndef CONFIG_MMU
unsigned(*mmap_capabilities)(struct file *);
#endif
ssize_t(*copy_file_range)(struct file * loff_t struct file * loff_t size_t unsigned int);
int(*clone_file_range)(struct file * loff_t struct file * loff_t u64);
ssize_t(*dedupe_file_range)(struct file * u64 u64 struct file * u64);
};
如同上面展示,可以实现非常多的文件操作,本文的主角是mmap handler的实现。
file_operations结构体的安装示例以及相关联的函数可以在下面看到
('/fs/proc/softirqs.c'):
static int show_softirqs(struct seq_file *p void *v)
{
int i j;
seq_puts(p " ");
for_each_possible_cpu(i)
seq_printf(p "CPU%-8d" i);
seq_putc(p '\n');
for (i = 0; i < NR_SOFTIRQS; i )
{
seq_printf(p "s:" softirq_to_name[i]);
for_each_possible_cpu(j)
seq_printf(p " u" kstat_softirqs_cpu(i j));
seq_putc(p '\n');
}
return 0;
}
static int softirqs_open(struct inode *inode struct file *file)
{
return single_open(file show_softirqs NULL);
}
static const struct file_operations proc_softirqs_operations = {
.open = softirqs_open
.read = seq_read
.llseek = seq_lseek
.release = single_release
};
static int __init proc_softirqs_init(void)
{
proc_create("softirqs" 0 NULL &proc_softirqs_operations);
return 0;
}
上述代码可以在'proc_softirqs_operations'结构体中看到,它允许调用open read llseek和close函数。当一个应用程序试图去打开一个'softirqs'文件时就会调用'open'系统调用,进而会调用到指向的'softirqs_open'函数。
2. 内核mmap Handler2.1 简单的mmap Handler
如上文提及,内核驱动可以实现自己的mmap handler。主要目的在于mmap handler可以加速用户空间进程和内核空间的数据交换。内核可以共享一块内核buffer或者直接共享某些物理内存地址范围给用户空间。用户空间进程可以直接修改这块内存而无需调用额外的系统调用。
一个简单(并且不安全)的mmap handler实现例子如下:
static struct file_operations fops =
{
.open = dev_open
.mmap = simple_mmap
.release = dev_release
};
int size = 0x10000;
static int dev_open(struct inode *inodep struct file *filep)
{
printk(KERN_INFO "MWR: Device has been opened\n");
filep->private_data = kzalloc(size GFP_KERNEL);
if (filep->private_data == NULL)
return -1;
return 0;
}
static int simple_mmap(struct file *filp struct vm_area_struct *vma)
{
printk(KERN_INFO "MWR: Device mmap\n");
if (
remap_pfn_range( vma vma->vm_start
virt_to_pfn(filp->private_data) vma->vm_end - vma->vm_start
vma->vm_page_prot ) )
{
printk(KERN_INFO "MWR: Device mmap failed\n");
return -EAGAIN;
}
printk(KERN_INFO "MWR: Device mmap OK\n");
return 0;
}
当打开上面的驱动时,dev_open会被调用,它简单的分配0x10000字节的buffer并且将其保存在private_data指针域。此后如果进程在对该文件描述符调用mmap时,就会调用到simple_mmap。
该函数简单的调用 remap_pfn_range 函数来创建一个进程地址空间的新映射,将private_data指向的buffer和vma->vm_start开始的尺寸为vma->vm_end-vma->vm_start 大小的地址空间关联起来。
一个请求对应文件mmap的用户空间程序样例:
int main(int argc char * const * argv)
{
int fd = open("/dev/MWR_DEVICE" O_RDWR);
if (fd < 0)
{
printf("[-] Open failed!\n");
return -1;
}
unsigned long * addr = (unsigned long *)mmap((void*)0x42424000 0x1000 PROT_READ | PROT_WRITE MAP_SHARED fd 0x1000);
if (addr == MAP_FAILED)
{
perror("Failed to mmap: ");
close(fd);
return -1;
}
printf("mmap OK addr: %lx\n" addr);
close(fd);
return 0;
}
上面的代码对/dev/MWR_DEVICE驱动文件调用了mmap,大小为0x1000,文件偏移设置为0x1000,目标地址设置为0x42424000。可以看到一个成功的映射结果:
# cat /proc/23058/maps
42424000-42425000 rw-s 00001000 00:06 68639 /dev/MWR_DEVICE
2.2 空的mmap Handler
到目前为止,我们已经见过了最简单的mmap操作的实现体,但是如果mmap handler是个空函数的话,会发生什么?
让我们考虑这个实现:
static struct file_operations fops =
{
.open = dev_open
.mmap = empty_mmap
.release = dev_release
};
static int empty_mmap(struct file *filp struct vm_area_struct *vma)
{
printk(KERN_INFO "MWR: empty_mmap\n");
return 0;
}
如我们所见,函数中只有log信息,这是为了让我们观察到函数被调用了。
当empty_mmap被调用时,我们毫不夸张的可以猜测到什么都不会发生,mmap会引发失败,毕竟此时并没有remap_pfn_range或其他类似的函数。
然而,事实并非如此。让我们运行一下用户空间代码,看看究竟会发生什么:
int fd = open("/dev/MWR_DEVICE" O_RDWR);
unsigned long size = 0x1000;
unsigned long *addr = (unsigned long *)mmap((void*)0x42424000 size PROT_READ | PROT_WRITE MAP_SHARED fd 0x1000);
在dmesg log中我们可以看到空的handler被成功调用:
[ 1119.393560] MWR: Device has been opened 1 time(s)
[ 1119.393574] MWR: empty_mmap
看看内存映射,有没有什么异常:
# cat /proc/2386/maps
42424000-42426000 rw-s 00001000 00:06 22305
我们并没有调用remap_pfn_range函数,然而映射却如同此前情景那样被创建了。唯一的不同在于映射是无效的,因为我们实际上并没有映射任何的物理内存给这块虚拟地址。这样的一个mmap实现中,一旦访问了映射的地址空间,要么引起进程崩溃,要么引起整个内核的崩溃,这取决于具体使用的内核。
让我们试试访问这块内存:
int fd = open("/dev/MWR_DEVICE" O_RDWR);
unsigned long size = 0x1000;
unsigned long * addr = (unsigned long *)mmap((void*)0x42424000
size PROT_READ | PROT_WRITE MAP_SHARED fd 0x1000); printf("addr[0]:
%x\n" addr[0]);
如我们所愿,进程崩溃了:
./mwr_client
Bus error
然而在某些3.10 arm/arm64 Android内核中,类似的代码会引起kernel panic。
所以说,作为一个开发者,你不应该假定一个空的handler可以按预期表现,在内核中始终使用一个可用的返回码来控制给定的情形。
一个带有vm_operations_struct的mmap Handler
在mmap操作中,有办法在已分配内存区间上使用vm_operations_struct结构体来指派多种其他操作的handler(例如控制unmapped memory page permission changes等)。
vm_operations_struct在kernel 4.9中的定义如下:
struct vm_operations_struct {
void(*open)(struct vm_area_struct * area);
void(*close)(struct vm_area_struct * area);
int(*mremap)(struct vm_area_struct * area);
int(*fault)(struct vm_area_struct *vma struct vm_fault *vmf);
int(*pmd_fault)(struct vm_area_struct * unsigned long address pmd_t * unsigned int flags);
void(*map_pages)(struct fault_env *fe pgoff_t start_pgoff pgoff_t end_pgoff);
int(*page_mkwrite)(struct vm_area_struct *vma struct vm_fault *vmf);
int(*pfn_mkwrite)(struct vm_area_struct *vma struct vm_fault *vmf);
int(*access)(struct vm_area_struct *vma unsigned long addr void *buf int len int write);
const char *(*name)(struct vm_area_struct *vma);
#ifdef CONFIG_NUMA
int(*set_policy)(struct vm_area_struct *vma struct mempolicy *new);
struct mempolicy *(*get_policy)(struct vm_area_struct *vma unsigned long addr);
#endif
struct page *(*find_special_page)(struct vm_area_struct *vma unsigned long addr);
};
如上文描述,这些函数指针可以用于实现特定的handler。关于此的详细描述在《Linux Device Drivers(Linux设备驱动)》一书中可以找到。
在实现内存分配器时,一个通俗可见的主流的行为是开发者实现了一个'fault' handler。例如,看看这一段:
static struct file_operations fops = {
.open = dev_open
.mmap = simple_vma_ops_mmap
.release = dev_release
};
static struct vm_operations_struct simple_remap_vm_ops = {
.open = simple_vma_open
.close = simple_vma_close
.fault = simple_vma_fault
};
static int simple_vma_ops_mmap(struct file *filp struct vm_area_struct *vma)
{
printk(KERN_INFO "MWR: Device simple_vma_ops_mmap\n");
vma->vm_private_data = filp->private_data;
vma->vm_ops = &simple_remap_vm_ops;
simple_vma_open(vma);
printk(KERN_INFO "MWR: Device mmap OK\n");
return 0;
}
void simple_vma_open(struct vm_area_struct *vma)
{
printk(KERN_NOTICE "MWR: Simple VMA open virt %lx phys %lx\n" vma->vm_start vma->vm_pgoff << PAGE_SHIFT);
}
void simple_vma_close(struct vm_area_struct *vma)
{
printk(KERN_NOTICE "MWR: Simple VMA close.\n");
}
int simple_vma_fault(struct vm_area_struct *vma struct vm_fault *vmf)
{
struct page *page = NULL;
unsigned long offset;
printk(KERN_NOTICE "MWR: simple_vma_fault\n");
offset = (((unsigned long)vmf->virtual_address - vma->vm_start) (vma->vm_pgoff << PAGE_SHIFT));
if (offset > PAGE_SIZE << 4)
goto nopage_out;
page = virt_to_page(vma->vm_private_data offset);
vmf->page = page;
get_page(page);
nopage_out:
return 0;
}
上述代码中我们可以看到simple_vma_ops_mmap函数用于控制mmap调用。它什么都没做,除了指派了simple_remap_vm_ops结构体作为虚拟内存操作的handler。
让我们看看下列代码在该driver上运行的效果:
int fd = open("/dev/MWR_DEVICE" O_RDWR);
unsigned long size = 0x1000;
unsigned long * addr = (unsigned long *)mmap((void*)0x42424000 size PROT_READ | PROT_WRITE MAP_SHARED fd 0x1000);
dmesg的结果:
[268819.067085] MWR: Device has been opened 2 time(s)
[268819.067121] MWR: Device simple_vma_ops_mmap
[268819.067123] MWR: Simple VMA open virt 42424000 phys 1000
[268819.067125] MWR: Device mmap OK
进程地址空间的映射:
42424000-42425000 rw-s 00001000 00:06 140215 /dev/MWR_DEVICE
如我们所见,simple_vma_ops_mmap函数被调用了,内存映射也创建了。例子中simple_vma_fault函数没有被调用。
问题在于,我们有了个地址范围为0x42424000-0x42425000的地址空间却不清楚它指向何处。我们没有为它关联物理内存,因此当进程试图访问这段地址的任一部分时,simple_vma_fault都会执行。
所以让我们看看这段用户空间代码:
int fd = open("/dev/MWR_DEVICE" O_RDWR);
unsigned long size = 0x2000;
unsigned long * addr = (unsigned long *)mmap((void*)0x42424000 size PROT_READ | PROT_WRITE MAP_SHARED fd 0x1000);
printf("addr[0]: %x\n" addr[0]);
代码唯一的改变在于使用了printf函数来访问映射内存。因为内存区域无效所以我们的simple_vma_fault例程被调用了。dmesg的输出可以看到:
[285305.468520] MWR: Device has been opened 3 time(s)
[285305.468537] MWR: Device simple_vma_ops_mmap
[285305.468538] MWR: Simple VMA open virt 42424000 phys 1000
[285305.468539] MWR: Device mmap OK
[285305.468546] MWR: simple_vma_fault
在simple_vma_fault函数中,我们可以观察到offset变量使用了指向一个没有被映射的地址的vmf->virtual_address进行了计算。我们这里就是addr[0]的地址。
下一个page结构体由virt_to_page宏得到,该宏将新获取的page赋值给vmf->page变量。
这一赋值意味着当fault handler返回时,addr[0]会指向由simple_vma_fault计算出来的某个物理地址。该内存可以被用户进程所访问而无需其他任何代码。
如果程序试图访问addr[513](假定sizeof(unsigned long)为8),fault handler会被再次调用,这是由于addr[0]和addr[513]在两个不同的内存页上,而此前仅有一个内存页被映射过。
这就是源码:
int fd = open("/dev/MWR_DEVICE" O_RDWR);
unsigned long size = 0x2000;
unsigned long * addr = (unsigned long *)mmap((void*)0x42424000 size PROT_READ | PROT_WRITE MAP_SHARED fd 0x1000);
printf("addr[0]: %x\n" addr[0]);
printf("addr[513]: %x\n" addr[513]);
生成内核log:
[286873.855849] MWR: Device has been opened 4 time(s)
[286873.855976] MWR: Device simple_vma_ops_mmap
[286873.855979] MWR: Simple VMA open virt 42424000 phys 1000
[286873.855980] MWR: Device mmap OK
[286873.856046] MWR: simple_vma_fault
[286873.856110] MWR: simple_vma_fault
3. 经典mmap Handler议题3.1 用户输入有效性的不足
让我们看看前面的mmap handler例子:
static int simple_mmap(struct file *filp struct vm_area_struct *vma)
{
printk(KERN_INFO "MWR: Device mmap\n");
if (
remap_pfn_range( vma vma->vm_start
virt_to_pfn(filp->private_data) vma->vm_end - vma->vm_start
vma->vm_page_prot ) )
{
printk(KERN_INFO "MWR: Device mmap failed\n");
return -EAGAIN;
}
printk(KERN_INFO "MWR: Device mmap OK\n");
return 0;
}
前面展示的代码展示了一个通用的实现mmap handler的途径,相似的代码可以在《Linux设备驱动》一书中找到。示例代码主要的议论点在于vma->vm_end和vma->vm_start的值从未检查有效性。取而代之的,它们被直接传递给remap_pfn_range作为尺寸参数。
这意味着一个恶意进程可以用一个不受限的尺寸来调用mmap。在我们这里,允许一个用户空间进程去mmap所有的在filp->private_databuffer之后的物理内存地址空间。这包括所有的内核内存。这意味着恶意进程能够从用户空间读写整个内核内存。
另一个流行的用法如下:
static int simple_mmap(struct file *filp struct vm_area_struct *vma)
{
printk(KERN_INFO "MWR: Device mmap\n");
if ( remap_pfn_range( vma vma->vm_start vma->vm_pgoff vma->vm_end - vma->vm_start vma->vm_page_prot ) )
{
printk(KERN_INFO "MWR: Device mmap failed\n");
return -EAGAIN;
}
printk(KERN_INFO "MWR: Device mmap OK\n");
return 0;
}
上面的代码中我们可以看到用户控制的offset vma->vm_pgoff被直接传递给了remap_pfn_range函数作为物理地址。这会使得恶意进程有能力传递一个任意物理地址给mmap,也就在用户空间拥有了整个内核内存的访问权限。在一些对示例进行微小改动的情景中经常可以看到,要么offset有了掩码,要么使用了另外一个值来计算。
3.2 整数溢出
经常可以看到开发者试图使用复杂的计算、按位掩码、位移、尺寸和偏移和等方法去验证映射的尺寸和偏移(size and offset)。
不幸的是,这常常导致了创建的复杂性以及不寻常的计算和验证过程晦涩难懂。
在对size和offset值进行少量fuzzing后,找到可以绕过有效性检查的值并非不可能。
让我们看看这段代码:
static int integer_overflow_mmap(struct file *filp struct vm_area_struct *vma)
{
unsigned int vma_size = vma->vm_end - vma->vm_start;
unsigned int offset = vma->vm_pgoff << PAGE_SHIFT;
printk(KERN_INFO "MWR: Device integer_overflow_mmap( vma_size: %x offset: %x)\n" vma_size offset);
if (vma_size offset > 0x10000)
{
printk(KERN_INFO "MWR: mmap failed requested too large a chunk of memory\n");
return -EAGAIN;
}
if (remap_pfn_range(vma vma->vm_start virt_to_pfn(filp->private_data) vma_size vma->vm_page_prot))
{
printk(KERN_INFO "MWR: Device integer_overflow_mmap failed\n");
return -EAGAIN;
}
printk(KERN_INFO "MWR: Device integer_overflow_mmap OK\n");
return 0;
}
上面的代码展示了一个典型的整数溢出漏洞,它发生在一个进程调用mmap2系统调用时使用了size为0xfffa000以及offset为0xf0006的情况。0xfffa000和0xf0006000的和等于0x100000000。
由于最大的unsigned int值为0xffffffff,最高符号位会被清掉,最终的和会变成0x0。这种情况下,mmap系统调用会成功绕过检查,进程会访问到预期buffer外的内存。
如上文提到的,有两个独立的系统调用mmap和mmap2。mmap2使得应用程序可以使用一个32位的off_t类型来映射大文件(最大为2^44字节),这是通过支持使用一个大数offset参数实现的。
有趣的是mmap2系统调用通常在64位内核系统调用表中不可用。然而,如果操作系统同时支持32位和64位进程,他就通常在32位进程中可用。这是因为32位和64位进程各使用独立的系统调用表。
3.3 有符号整型类型
另一个老生常谈的议题就是size变量的有符号类型。让我们看看这段代码:
static int signed_integer_mmap(
struct file *filp struct vm_area_struct *vma)
{
int vma_size = vma->vm_end - vma->vm_start;
int offset = vma->vm_pgoff << PAGE_SHIFT;
printk(KERN_INFO "MWR: Device signed_integer_mmap( vma_size: %x offset: %x)\n" vma_size offset);
if (vma_size > 0x10000 || offset < 0 || offset > 0x1000 || (vma_size offset > 0x10000))
{
printk(KERN_INFO "MWR: mmap failed requested too large a chunk of memory\n");
return -EAGAIN;
}
if (remap_pfn_range(vma vma->vm_start offset vma->vm_end - vma->vm_start vma->vm_page_prot))
{
printk(KERN_INFO "MWR: Device signed_integer_mmap failed\n");
return -EAGAIN;
}
printk(KERN_INFO "MWR: Device signed_integer_mmap OK\n");
return 0;
}
上述代码中,用户控制数据存储在vma_size和offset变量中,它们都是有符号整型。size和offset检查是这一行:
if (vma_size > 0x10000 || offset < 0 || offset > 0x1000 || (vma_size offset > 0x10000))
不幸的是,因为vma_size被声明为有符号整型数,一种攻击手法是通过使用负数诸如0xf0000000来绕过这个检查。这回引起0xf0000000字节被映射到用户空间地址。
本文由看雪论坛玉涵 编译,来源exploit-database-papers转载请注明来自看雪社区