麻省理工数学系博士研究方向(5分钟带你了解MIT数学科研)
麻省理工数学系博士研究方向(5分钟带你了解MIT数学科研)D3 Design: facilities 绿化D2 Diversity: commercial medical education研究目的:提出政策性建议A: 5DD1 Density: 人口,岗位
今天给大家分享
某同学去MIT数学科研的感受
DAY:1
1. framework
居民是否会选择轨道交通,或者自行车,甚至步行的交通方式来出行与两大类因素有关
研究目的:提出政策性建议
A: 5D
D1 Density: 人口,岗位
D2 Diversity: commercial medical education
D3 Design: facilities 绿化
D4 Destination: number of destination 可达性
D5 Distance: station CBD
B: 3P
P1 Performance: service time of waiting
P2 Pedestrian: bicycle density
P3 Parking: number price
Q1: 项目1的数据库中有十一个变量,这是一个变量分别代表上述D,P中的哪些指标?
2.PRO2:
轨道交通站点周边居民与非。。区别 if出行距离短。是否because建成环境不同,因果关系。
继续清洗数据,将data2以出行目的分类做表,粘贴修正距离时遇到障碍
相关性分析 D1和D2:
libname pro1 'E:\study';
run;
data pro1.pca1;
set pro1.pca;
drop Pking_Coun Dist_Ter Dist_PuBu;
run;
proc standard data=pro1.pca1 m=0 s=1 out=pro1.prep;
run;
proc princomp data=pro1.prep out=pro1.prin;
var BuUp_Ratio Pop_Den WkPOI_Den Den_Gra Mix_Etpy Rd_Den neg_Expr_Den GrTeta_Den BusSta_Nm neg_dis_ter neg_dis_pub neg_parking;
run;
proc sort;
by prin1;
proc print;
id StatName;
var prin1 prin2;
proc plot;
plot prin2*prin1=StatName/haxis=-5 to 10 by 1 vaxis= -5 to 10;
run;
下一步:构造综合评价函数;
DAY:4构造综合评价函数,排序,得分布
proc univariate data=pro1.index;
var index;
histogram;
qqplot;
run;
method2:
RSR
libname pro1 'E:\study\pro1';
run;
proc rank data=pro1.RSR out=rank1;
var x1-x6 x8 x11;
ranks Rx1-Rx6 Rx8 Rx11;
proc rank descending out=rank2;
var x7 x9 x10 x12;
ranks Rx7 Rx9 Rx10 Rx12;
run;
data pro1.rank;
merge rank1 rank2;
RSR=sum(of Rx1-Rx12)/(12*420);
proc print;
var StatName Rx1-Rx12 RSR ;
run;
proc rank data=pro1.rank out=pro1.rankrsr;
var rsr;
ranks rankrsr;
proc print;
var statname Rx1-Rx12 RSR rankrsr;
run;
data pro1.probil;
set pro1.rankrsr;
p=rankrsr/420;
if rankrsr=10 then do;p=1-1/(4*420);
end;
probil=PROBIT(p) 5;
proc print;
var statname linename rsr p probil;
run;
proc reg data=pro1.probil;
model rsr=probil;
plot rsr*probil;
run;
data pro1.result;
set pro1.probil;
if probil<3.5 then type="TOD";
if 3.5 <= probil<5 then type="TAD";
if 5<=probil<6 then type="TRD";
if probil >= 6 then type="AOD";
proc print;
var statname linename probil RSR type;
proc anova ;
class type;
model RSR=type;
means type/SNK hovtest;
run;
weighted RSR:
data pro1.wrsr;
set pro1.rank;
WRx1=0.081492209*Rx1;
WRx2=0.04557531*Rx2;
WRx3=0.087445066*Rx3;
WRx4=0.092259289*Rx4;
WRx5=0.066290451*Rx5;
WRx6=0.084448662*Rx6;
WRx7=0.068318018*Rx7;
WRx8=0.098711546*Rx8;
WRx9=0.084478626*Rx9;
WRx10=0.089662405*Rx10;
WRx11=0.100639233*Rx11;
WRx12=0.100679185*Rx12;
WRSR=SUM(of WRx1-WRx12)/420;
proc sort;
by WRSR;
proc rank out=wrsr;
var WRSR;
ranks;
proc print;
var Statname WRx1-WRx12 WRSR;
run;
weight of entropy method
0.22814191
0.02381243
0.07072242
0.04469847
0.01105354
0.01842156
0.18322393
0.09947216
DAY7:Pro 2:
libname pro2 'E:\study\pro2';
run;
* For qualitative variables Input order ”analyst” –Statistics—table analysis—input variables.
* For quantitative variables:
proc anova data=pro2.compare;
class Sta_or_not;
model fam_num below_18 anu_rev tran_fee age after_mov=sta_or_not;
run;
proc anova data=pro2.compareA;
class Sta_or_not;
model pass_fee tran_fee fuel_fee=sta_or_not;
run;
今天的分享就酱紫
明天见
想要了解名校科研详情,可以 名校科研-科研顾问-vx:123911280,进行咨询。
想要报名的同学可以点击这里:https://jinshuju.net/f/WWnZW9