快捷搜索:  汽车  科技

世界最神奇一组数字,德国科学家竟整理出小数点后500万数字

世界最神奇一组数字,德国科学家竟整理出小数点后500万数字阿拉伯数学家卡西在15世纪初求得圆周率17位精确小数值,打破祖冲之保持近千年的纪录。德国数学家柯伦于1596年将π值算到20位小数值,后投入毕生精力,于1610年算到小数后35位数,该数值被用他的名字称为鲁道夫数。其中的密率在西方直到1573才由德国人奥托得到,1625年发表于荷兰工程师安托尼斯的著作中,欧洲称之为安托尼斯率。常用的 π 近以值包括疏率: 22/7 及密率: 355/113。这两项均由祖冲之给出。中国数学家刘徽在注释《九章算术》时(公元263年)只用圆内接正多边形就求得π的近似值,也得出精确到两位小数的π值,他的方法被后人称为割圆术,其中有追去极限的思想。南北朝时代的数学家祖冲之利用割圆术进一步得出精确到小数点后7位的π值(公元466年),给出不足近似值3.1415926和过剩近似值3.1415927,还得到两个近似分数值,密率355/113和约率22/7,这一纪录在世界上

然而,π是怎么来的呢?

古希腊欧几里得的《几何原本》(约公元前3世纪初)中提到圆周率是常数,中国古算书《周髀算经》(约公元前2世纪)中有「径一而周三」的记载,也认为圆周率是常数。历史上曾采用过圆周率的多种近似值 ,早期大都是通过实验而得到的结果,如古埃及纸草书(约公元前1700)中取π=(4/3)^4≒3.1604 。

世界最神奇一组数字,德国科学家竟整理出小数点后500万数字(1)

第一个用科学方法寻求圆周率数值的人是阿基米德,他在《圆的度量》(公元前3世纪)中用圆内接和外切正多边形的周长确定圆周长的上下界,从正六边形开始,逐次加倍计算到正96边形,得到(3 (10/71)) < π < (3 (1/7)) ,开创了圆周率计算的几何方法(亦称古典方法,或阿基米德方法),得出精确到小数点后两位的π值。

世界最神奇一组数字,德国科学家竟整理出小数点后500万数字(2)

圆周率,一般以π来表示,是一个在数学及物理学普遍存在的数学常数。它定义为圆形之周长与直径之比。它也等于圆形之面积与半径平方之比。是精确计算圆周长、圆面积、球体积等几何形状的关键。分析学上,π 可定义为是最小的x>0 使得 sin(x) = 0。

常用的 π 近以值包括疏率: 22/7 及密率: 355/113。这两项均由祖冲之给出。

世界最神奇一组数字,德国科学家竟整理出小数点后500万数字(3)

中国数学家刘徽在注释《九章算术》时(公元263年)只用圆内接正多边形就求得π的近似值,也得出精确到两位小数的π值,他的方法被后人称为割圆术,其中有追去极限的思想。

南北朝时代的数学家祖冲之利用割圆术进一步得出精确到小数点后7位的π值(公元466年),给出不足近似值3.1415926和过剩近似值3.1415927,还得到两个近似分数值,密率355/113和约率22/7,这一纪录在世界上保持了一千年之久。为纪念祖冲之对中国圆周率发展的贡献,将这一推算值用他的名字被命名为“祖冲之圆周率”,简称“祖率”。

其中的密率在西方直到1573才由德国人奥托得到,1625年发表于荷兰工程师安托尼斯的著作中,欧洲称之为安托尼斯率。

世界最神奇一组数字,德国科学家竟整理出小数点后500万数字(4)

阿拉伯数学家卡西在15世纪初求得圆周率17位精确小数值,打破祖冲之保持近千年的纪录。德国数学家柯伦于1596年将π值算到20位小数值,后投入毕生精力,于1610年算到小数后35位数,该数值被用他的名字称为鲁道夫数。

1579年法国数学家韦达给出π的第一个解析表达式。

世界最神奇一组数字,德国科学家竟整理出小数点后500万数字(5)

此后,无穷乘积式、无穷连分数、无穷级数等各种π 值表达式纷纷出现,π值计算精度也迅速增加。1706 年英国数学家梅钦计算π值突破100位小数大关。1873年另一位英国数学家尚可斯将π值计算到小数点后707位,可惜他的结果从528位起是错的。到1948年英国的弗 格森和美国的伦奇共同发表了π的808位小数值,成为人工计算圆周率值的最高纪录。

电子计算机的出现使π值计算有了突飞猛进的发展。1949年美国马里兰州阿伯丁的军队弹道研究实验室首次用计算机(ENIAC)计算π值,一下子就算到2037位小数,突破了千位数。1989年美国哥伦比亚大学研究人员用克雷-2型和IBM-VF型巨型电子计算机计算出 π值小数点后4.8亿位数,后又继续算到小数点后10.1 亿位数,创下新的纪录。

除π的数值计算外,它的性质探讨也吸引了众多数学家。1761年瑞士数学家兰伯特第一个证明π是无理数。1794年法国数学家勒让德又证明了π2也是无理数。到1882年德国数学家林德曼首次证明了π是超越数,由此否定了困惑人们两千多年的「化圆为方」尺规作图问题。还有人对π的特征及与其它数字的联系进行研究。如1929年苏联数学家格尔丰德证明了eπ 是超越数等等。

世界最神奇一组数字,德国科学家竟整理出小数点后500万数字(6)

互动百科公众号:hudong_baike

猜您喜欢: