python构建节点树(python查找树)
python构建节点树(python查找树)节点的度:一个节点含有的子树的个数称为该节点的度;树的术语没有父节点的节点称为根节点;每一个非根节点有且只有一个父节点;除了根节点外,每个子节点可以分为多个不相交的子树;
查找
二分查找又称折半查找,优点是比较次数少,查找速度快,平均性能好;其缺点是要求待查表为有序表,且插入删除困难。因此,折半查找方法适用于不经常变动而查找频繁的有序列表。首先,假设表中元素是按升序排列,将表中间位置记录的关键字与查找关键字比较,如果两者相等,则查找成功;否则利用中间位置记录将表分成前、后两个子表,如果中间位置记录的关键字大于查找关键字,则进一步查找前一子表,否则进一步查找后一子表。重复以上过程,直到找到满足条件的记录,使查找成功,或直到子表不存在为止,此时查找不成功。
代码实现:
每个节点有零个或多个子节点;
没有父节点的节点称为根节点;
每一个非根节点有且只有一个父节点;
除了根节点外,每个子节点可以分为多个不相交的子树;
树的术语
-
节点的度:一个节点含有的子树的个数称为该节点的度;
-
树的度:一棵树中,最大的节点的度称为树的度;
-
叶节点或终端节点:度为零的节点;
-
父亲节点或父节点:若一个节点含有子节点,则这个节点称为其子节点的父节点;
-
孩子节点或子节点:一个节点含有的子树的根节点称为该节点的子节点;
-
兄弟节点:具有相同父节点的节点互称为兄弟节点;
-
节点的层次:从根开始定义起,根为第1层,根的子节点为第2层,以此类推;
-
树的高度或深度:树中节点的最大层次;
-
堂兄弟节点:父节点在同一层的节点互为堂兄弟;
-
节点的祖先:从根到该节点所经分支上的所有节点;
-
子孙:以某节点为根的子树中任一节点都称为该节点的子孙。
-
森林:由m(m>=0)棵互不相交的树的集合称为森林;
树的种类
-
无序树:树中任意节点的子节点之间没有顺序关系,这种树称为无序树,也称为自由树;
-
有序树:树中任意节点的子节点之间有顺序关系,这种树称为有序树;
-
二叉树:每个节点最多含有两个子树的树称为二叉树;
-
完全二叉树:对于一颗二叉树,假设其深度为d(d>1)。除了第d层外,其它各层的节点数目均已达最大值,且第d层所有节点从左向右连续地紧密排列,这样的二叉树被称为完全二叉树,其中满二叉树的定义是所有叶节点都在最底层的完全二叉树;
-
平衡二叉树(AVL树):当且仅当任何节点的两棵子树的高度差不大于1的二叉树;
-
排序二叉树(二叉查找树(英语:Binary Search Tree),也称二叉搜索树、有序二叉树);
-
霍夫曼树(用于信息编码):带权路径最短的二叉树称为哈夫曼树或最优二叉树;
-
B树:一种对读写操作进行优化的自平衡的二叉查找树,能够保持数据有序,拥有多余两个子树
二叉树的基本概念
二叉树是每个节点最多有两个子树的树结构。通常子树被称作“左子树”(left subtree)和“右子树”(right subtree)
性质1: 在二叉树的第i层上至多有2^(i-1)个结点(i>0)
性质2: 深度为k的二叉树至多有2^k - 1个结点(k>0)
性质3: 对于任意一棵二叉树,如果其叶结点数为N0,而度数为2的结点总数为N2,则N0=N2 1;
性质4:具有n个结点的完全二叉树的深度必为 log2(n 1)
性质5:对完全二叉树,若从上至下、从左至右编号,则编号为i 的结点,其左孩子编号必为2i,其右孩子编号必为2i+1;其双亲的编号必为i/2(i=1 时为根 除外)
对于一颗二叉树,深度优先搜索(Depth First Search)是沿着树的深度遍历树的节点,尽可能深的搜索树的分支。
那么深度遍历有重要的三种方法。这三种方式常被用于访问树的节点,它们之间的不同在于访问每个节点的次序不同。这三种遍历分别叫做先序遍历(preorder),中序遍历(inorder)和后序遍历(postorder)。我们来给出它们的详细定义,然后举例看看它们的应用。
-
先序遍历 在先序遍历中,我们先访问根节点,然后递归使用先序遍历访问左子树,再递归使用先序遍历访问右子树
根节点->左子树->右子树
中序遍历 在中序遍历中,我们递归使用中序遍历访问左子树,然后访问根节点,最后再递归使用中序遍历访问右子树
左子树->根节点->右子树
后序遍历 在后序遍历中,我们先递归使用后序遍历访问左子树和右子树,最后访问根节点
左子树->右子树->根节点
广度优先遍历(层次遍历)
从树的root开始,从上到下从从左到右遍历整个树的节点