国产gpu发展前景:GPU深度报告 三大巨头 十四个国内玩家一文看懂
国产gpu发展前景:GPU深度报告 三大巨头 十四个国内玩家一文看懂FPGA是一种半定制芯片,灵活性强集成度高,但运算量小,量产成本高,适用于算法更新频繁或市场规模小的专用领域。GPU用于大量重复计算,由数以千计的更小、更高效的核心组成大规模并行计算架构,配备GPU的服务器可取代数百台通用CPU服务器来处理HPC和AI业务。OpenCL异构运算构成异构运算下的GPU工作流程GPU与ASIC和FPGA的对比:数据、算力和算法是AI三大要素,CPU配合加速芯片的模式成为典型的AI部署方案,CPU提供算力,加速芯片提升算力并助推算法的产生。常见的AI加速芯片包括GPU、FPGA、ASIC三类。
GPU和CPU的核心对比
后摩尔时代,随着GPU的可编程性不断增强,GPU的应用能力已经远远超出了图形渲染,部份GPU被用于图形渲染以外领域的计算成为GPGPU。与此同时,CPU为了追求通用性,只有少部分晶体管被用于完成运算,而大部分晶体管被用于构建控制电路和高速缓存。但是由于GPU对CPU的依附性以及GPU相较CPU更高的开发难度,所以GPU不可能完全取代CPU。我们认为未来计算架构将是GPU CPU的异构运算体系。
在GPU CPU的异构运算中,GPU和CPU之间可以无缝地共享数据,而无需内存拷贝和缓存刷新,因为任务以极低的开销被调度到合适的处理器上。CPU凭借多个专为串行处理而优化的核心运行程序的串行部份,而GPU使用数以千计的小核心运行程序的并行部分,充分发挥协同效应和比较优势。
异构运算除了需要相关的CPU和GPU等硬件支持,还需要能将它们有效组织的软件编程。OpenCL是(OpenComputing Language)的简称,它是第一个为异构系统的通用并行编程而产生的统一的、免费的标准。OpenCL支持由多核的CPU、GPU、Cell架构以及信号处理器(DSP)等其他并行设备组成的异构系统。
OpenCL异构运算构成
异构运算下的GPU工作流程
GPU与ASIC和FPGA的对比:数据、算力和算法是AI三大要素,CPU配合加速芯片的模式成为典型的AI部署方案,CPU提供算力,加速芯片提升算力并助推算法的产生。常见的AI加速芯片包括GPU、FPGA、ASIC三类。
GPU用于大量重复计算,由数以千计的更小、更高效的核心组成大规模并行计算架构,配备GPU的服务器可取代数百台通用CPU服务器来处理HPC和AI业务。
FPGA是一种半定制芯片,灵活性强集成度高,但运算量小,量产成本高,适用于算法更新频繁或市场规模小的专用领域。
ASIC专用性强,市场需求量大的专用领域,但开发周期较长且难度极高。
在AI训练阶段需要大量数据运算,GPU预计占64%左右市场份额,FPGA和ASIC分别为22%和14%。推理阶段无需大量数据运算,GPU将占据42%左右市场,FPGA和ASIC分别为34%和24%。
不同应用场景AI芯片性能需求和具体指标
GPU、FPGA、ASIC AI芯片对比
在PC诞生之初,并不存在GPU的概念,所有的图形和多媒体运算都由CPU负责。但是由于X86 CPU的暂存器数量有限,适合串行计算而不适合并行计算,虽然以英特尔为代表的厂商多次推出SSE等多媒体拓展指令集试图弥补CPU的缺陷,但是仅仅在指令集方面的改进不能起到根本效果,所以诞生了图形加速器作为CPU的辅助运算单元。
GPU的发展史概括说来就是NVIDIA、AMD(ATI)的发展史,在此过程中曾经的GPU巨头Imagination、3dfx、东芝等纷纷被后辈超越。如今独立显卡领域主要由英伟达和AMD控制,而集成显卡领域由英特尔和AMD控制。