快捷搜索:  汽车  科技

求三角形面积的方法有多种割补法(干货解三角形专题二)

求三角形面积的方法有多种割补法(干货解三角形专题二)(2)若∠ACB的平分线交AB于点D 且CD=1 求△ABC的面积的最小值.(1)若a=2b 求tan A的值;高考链接例题讲解【例1】已知△ABC中 内角A B C的对边分别为a b c C=120°.

求三角形面积的方法有多种割补法(干货解三角形专题二)(1)

解三角形的工具

因为解三角形中涉及到三角函数,所以需要对三角函数的诱导公式、两角和差甚至二倍角公式熟记并灵活运用。

最近高三考试中,解三角形不乏求tan α,但是学生对于本题型基本上难以下笔,因此本文主要针对如何求解三角形中角的正切值作简单的总结。

最经典的题目是2013年的全国Ⅰ卷,本题揭示了其中一种常见的方法——利用正弦定理构造sinα与cosα之间的等量关系,从而求解tanα。

高考链接

求三角形面积的方法有多种割补法(干货解三角形专题二)(2)

求三角形面积的方法有多种割补法(干货解三角形专题二)(3)

例题讲解

【例1】已知△ABC中 内角A B C的对边分别为a b c C=120°.

(1)若a=2b 求tan A的值;

(2)若∠ACB的平分线交AB于点D 且CD=1 求△ABC的面积的最小值.

求三角形面积的方法有多种割补法(干货解三角形专题二)(4)

求三角形面积的方法有多种割补法(干货解三角形专题二)(5)

求三角形面积的方法有多种割补法(干货解三角形专题二)(6)

求三角形面积的方法有多种割补法(干货解三角形专题二)(7)

拓展提升

求三角形面积的方法有多种割补法(干货解三角形专题二)(8)

(一题多解,寻求突破)

求三角形面积的方法有多种割补法(干货解三角形专题二)(9)

求三角形面积的方法有多种割补法(干货解三角形专题二)(10)

求三角形面积的方法有多种割补法(干货解三角形专题二)(11)

【反思总结】

解三角形中求正切值tanα:

方法一和方法二中——构造等量关系求值,但是在一个三角形中利用正余弦定理不能够消去某边长,因此用两次正余弦定理。关键:找该边所在的两个三角形

方法三中,因为角在直角三角形中,考虑直接表达tanα

巩固训练

求三角形面积的方法有多种割补法(干货解三角形专题二)(12)

求三角形面积的方法有多种割补法(干货解三角形专题二)(13)

【题型方法总结】

解三角形中求正切值tanα:

方法一:直接法

①角所在的三角形条件足够,如两边一夹角,可求解角α的正余弦

②角所在的三角形为直角三角形,可考虑直接表达tanα

方法二:两角和差——角是已知角(或能够求解出三角函数的角)的和差

方法三:构造等量关系(一次不行,那就两次)

①一个三角形中:正弦定理,用与α有关的角、边

②两个三角形中:两次正(余)弦定理(消元)——一个三角形中正(余)弦定理有无法求解的边长,则找到与该边长有关的另一个三角形使用正(余)弦定理,用方程的思想消元(即找两个有公共边的三角形)

【备注】专题一在“了解更多”

高考突破栏:好题分享、干货总结、限时训练、套卷、考试真题

知识分类栏:函数与解三角、数列与不等式、向量与立体几何、概率统计与计数原理、解析几何与综合

数学课堂栏:精品课件、精选教案

高考数学学堂,你的数学小管家!

你值得拥有~

猜您喜欢: