柯西在数学上的地位(柯西外号苦瓜19世纪数学界的最大反派)
柯西在数学上的地位(柯西外号苦瓜19世纪数学界的最大反派)1807年至1810年柯西在工学院学习,曾当过交通道路工程师。由于身体欠佳,接受了拉格朗日和拉普拉斯的劝告,放弃工程师而致力于纯数学的研究。柯西少年时代的数学才华颇受这两位数学家的赞赏,并预言柯西日后必成大器。(拉格朗日后面也确实担任了他的老师)他开创了积分几何,首先证明了阶数超过了的矩阵有特征值,成功地建立了极限论,首先阐明了有关定积分的概念,并且用这种积分来研究多种多样的问题。柯西法国数学家、物理学家、天文学家。他1789年出生于巴黎,父亲是一位精通古典文学的律师,与当时法国的大数学家拉格朗日与拉普拉斯交往密切。
在历史上,有一位数学家叫欧拉,他的徒弟叫拉格朗日,他徒弟的徒弟叫柯西。
这个徒弟的徒弟虽然比不上他,但是还是写了些东西的做出了一些成就的,他....
他的著作多达28卷
承包了那个时期的数学公式的前缀...
他开创了积分几何,首先证明了阶数超过了的矩阵有特征值,成功地建立了极限论,首先阐明了有关定积分的概念,并且用这种积分来研究多种多样的问题。
柯西法国数学家、物理学家、天文学家。他1789年出生于巴黎,父亲是一位精通古典文学的律师,与当时法国的大数学家拉格朗日与拉普拉斯交往密切。
柯西少年时代的数学才华颇受这两位数学家的赞赏,并预言柯西日后必成大器。(拉格朗日后面也确实担任了他的老师)
1807年至1810年柯西在工学院学习,曾当过交通道路工程师。由于身体欠佳,接受了拉格朗日和拉普拉斯的劝告,放弃工程师而致力于纯数学的研究。
1821年柯西提出极限定义的方法,把极限过程用不等式来刻画,后经魏尔斯特拉斯改进,成为现在所说的柯西极限定义。
虽然柯西主要研究数学分析领域,但他在其它方面的研究成果也很丰富。
复变函数的微积分理论就是由他创立的。在代数方面、理论物理、光学、弹性理论方面,也有突出贡献。
柯西的数学成就不仅辉煌,而且数量惊人。柯西全集有27卷,其论著有800多篇,在数学史上是仅次于欧拉的多产数学家。
2.分析基础
柯西在综合工科学校所授分析课程及有关教材给数学界造成了极大的影响。自从牛顿和莱布尼茨发明微积分(即无穷小分析,简称分析)以来,这门学科的理论基础是模糊的。为了进一步发展,必须建立严格的理论。柯西为此首先成功地建立了极限论。
3.极限论的功能
设函数f(x)在点x。的某一去心邻域内有定义,如果存在常数A,对于任意给定的正数ε(无论它多么小),总存在正数δ,使得当x满足不等式0<|x-x。|<δ时,对应的函数值f(x)都满足不等式:|f(x)-A|<ε,那么常数A就叫做函数f(x)当x→x。时的极限。
4.常微分方程
柯西在分析方面最深刻的贡献在常微分方程领域。他首先证明了方程解的存在和唯一性。在他以前,没有人提出过这种问题。通常认为是柯西提出的三种主要方法,即柯西-利普希茨法,逐渐逼近法和强级数法,实际上以前也散见到用于解的近似计算和估计。柯西的最大贡献就是看到通过计算强级数,可以证明逼近步骤收敛,其极限就是方程的所求解。
弹性力学数学理论
柯西是在力学方面是弹性力学数学理论的奠基人。他在1823年的《弹性体及流体(弹性或非弹性)平衡和运动的研究》一文中,提出(各向同性的)弹性体平衡和运动的一般方程(后来他还把这方程推广到各向异性的情况),给出应力和应变的严格定义,提出它们可分别用六个分量表示。这论文对于流体运动方程同样有意义,它比C.-L.-M.-H.纳维于1821年得到的结果晚,但采用的是连续统的模型,结果也比纳维所得的更普遍。1828年他在此基础上提出的流体方程只比现在通用的纳维-斯托克斯方程(1848)少一个静压力项。
5.其他
虽然柯西主要研究分析,但在数学中各领域都有贡献。关于用到数学的其他学科,他在天文和光学方面的成果是次要的,可是他却是数理弹性理论的奠基人之一。除以上所述外,他在数学中其他贡献如下:
1).分析方面:在一阶偏微分方程论中行进丁特征线的基本概念;认识到傅立叶变换在解微分方程中的作用等等。
2).几何方面:开创了积分几何,得到了把平面凸曲线的长用它在平面直线上一些正交投影表示出来的公式。
3).代数方面:首先证明了阶数超过了的矩阵有特征值;与比内同时发现两行列式相乘的公式,首先明确提出置换群概念,并得到群论中的一些非平凡的结果;独立发现了所谓“代数要领”,即格拉斯曼的外代数原理。
本文转载自微信公众号算法与数学之美