日本人工智能机器人测评:忽悠 智能机器人 竟然改改物品纹理就成功了
日本人工智能机器人测评:忽悠 智能机器人 竟然改改物品纹理就成功了在真实世界场景中更多使用不可导渲染器,因为其可以更好渲染出更加逼真和丰富的场景元素和环境条件。因此,在不可导渲染器上的对抗攻击效果可以有效的验证本方法在真实场景中的可行性。如下图所示,时空融合对抗攻击算法可以在未知参数的“黑盒”不可导渲染器下取得很好的攻击效果。通过下图可以看出,时空融合的对抗攻击算法所生成的对抗噪音具有非常好的视觉效果,可以达到人眼不可分辨(黄色方框表示对抗攻击的物体)。
整体优化损失
将时空信息融合,就得到了整体的优化损失函数:
其中,为了增加攻击成功率,研究人员引入不同的环境信息c来进行噪音的优化(如:角度、光照)。进一步,控制产生的噪声大小范围来使得其人眼不可感知:
实验结果:智能机器人很容易被欺骗
通过实验结果评估该对抗攻击算法的有效性,主要针对EQA-v1数据集进行测试。
可导渲染器的攻击效果
首先,研究人员将渲染过程中的渲染器设置为可导的,并分别进行了白盒攻击和黑盒攻击实验。通过下表可示,该算法在多个指标上都取得了最高的攻击成功率(问答准确率和移动距离等):
不可导渲染器的攻击效果
在真实世界场景中更多使用不可导渲染器,因为其可以更好渲染出更加逼真和丰富的场景元素和环境条件。因此,在不可导渲染器上的对抗攻击效果可以有效的验证本方法在真实场景中的可行性。如下图所示,时空融合对抗攻击算法可以在未知参数的“黑盒”不可导渲染器下取得很好的攻击效果。
可视化效果
通过下图可以看出,时空融合的对抗攻击算法所生成的对抗噪音具有非常好的视觉效果,可以达到人眼不可分辨(黄色方框表示对抗攻击的物体)。