快捷搜索:  汽车  科技

神经网络算法数学原理(神经网络原来是这样和数学挂钩的)

神经网络算法数学原理(神经网络原来是这样和数学挂钩的)经过这样处理,式子变漂亮了,也不容易发生计算错误。这个b 称为偏置(bias)。再来看一下激活函数的式(2)。这里的θ 称为阈值,在生物学上是表现神经元特性的值。从直观上讲,θ表示神经元的感受能力,如果θ 值较大,则神经元不容易兴奋(感觉迟钝),而如果值较小,则神经元容易兴奋(敏感)。然而,式(2) 中只有θ 带有负号,这看起来不漂亮。数学不喜欢不漂亮的东西。另外,负号具有容易导致计算错误的缺点,因此,我们将- θ 替换为b。

关于这个函数,我们以后可以继续深入学习。这里,我们先来看看它的图形,Sigmoid 函数σ(z) 的输出值是大于0 小于1 的任意值。此外,该函数连续、光滑,也就是说可导。这两种性质使得Sigmoid 函数很容易处理。

神经网络算法数学原理(神经网络原来是这样和数学挂钩的)(1)

右图是激活函数的代表性例子Sigmoid 函数σ(z) 的图形。除了原点附近的部分,其余部分与单位阶跃函数(左图)相似。Sigmoid 函数具有处处可导的性质,很容易处理。

单位阶跃函数的输出值为1 或0,表示点火与否。然而,Sigmoid 函数的输出值大于0 小于1,这就有点难以解释了。如果用生物学术语来解释的话,如上文中的表格所示,可以认为输出值表示神经单元的兴奋度等。输出值接近1 表示兴奋度高,接近0 则表示兴奋度低。

神经网络算法数学原理(神经网络原来是这样和数学挂钩的)(2)

偏置

再来看一下激活函数的式(2)。

神经网络算法数学原理(神经网络原来是这样和数学挂钩的)(3)

这里的θ 称为阈值,在生物学上是表现神经元特性的值。从直观上讲,θ表示神经元的感受能力,如果θ 值较大,则神经元不容易兴奋(感觉迟钝),而如果值较小,则神经元容易兴奋(敏感)。

然而,式(2) 中只有θ 带有负号,这看起来不漂亮。数学不喜欢不漂亮的东西。另外,负号具有容易导致计算错误的缺点,因此,我们将- θ 替换为b。

神经网络算法数学原理(神经网络原来是这样和数学挂钩的)(4)

经过这样处理,式子变漂亮了,也不容易发生计算错误。这个b 称为偏置(bias)。

神经网络算法数学原理(神经网络原来是这样和数学挂钩的)(5)

猜您喜欢: