神经网络训练出来的权重是什么:真正的神经网络 敢于不学习权重
神经网络训练出来的权重是什么:真正的神经网络 敢于不学习权重实验结果鉴于网络的前馈本质,在之前不连接的节点之间添加新连接。当隐藏节点的激活函数被改变后,激活函数进入随机分配模式。激活函数包括常见函数(如线性激活函数、sigmoid、ReLU)和不那么常见的(如 Gaussian、sinusoid、step),它们编码输入和输出之间的多种关系。用于搜索神经网络拓扑的算子受到神经进化算法 NEAT 的启发。不过 NEAT 中的拓扑和权重值是同时进行优化的,而本研究无视权重,仅使用拓扑搜索算子。最初的搜索空间包括多个稀疏连接网络、没有隐藏节点的网络,以及输入和输出层之间仅有少量可能连接的网络。使用 insert node、add connection、change activation 这三个算子中的其中一个修改已有网络,从而创建新网络。新节点的激活函数是随机分配的。图 3:搜索网络拓扑空间的算子。
图 2:与权重无关的神经网络搜索图示。
通过每次 rollout 时采样单个共享权重,与权重无关的神经网络搜索在避免权重训练的同时,探索神经网络拓扑结构的空间。研究者基于多次 rollout 评估网络,在每次 rollout 时,为单个共享权重指定相应的值,并记录实验期间的累积奖励。
之后,根据网络的性能和复杂度对网络群组进行排序。然后,根据概率选出排名最高的网络以生成新的群组,排名最高的网络是会随机变化的。之后重复这一过程。
最最核心的拓扑搜索
用于搜索神经网络拓扑的算子受到神经进化算法 NEAT 的启发。不过 NEAT 中的拓扑和权重值是同时进行优化的,而本研究无视权重,仅使用拓扑搜索算子。
最初的搜索空间包括多个稀疏连接网络、没有隐藏节点的网络,以及输入和输出层之间仅有少量可能连接的网络。使用 insert node、add connection、change activation 这三个算子中的其中一个修改已有网络,从而创建新网络。新节点的激活函数是随机分配的。
图 3:搜索网络拓扑空间的算子。
鉴于网络的前馈本质,在之前不连接的节点之间添加新连接。当隐藏节点的激活函数被改变后,激活函数进入随机分配模式。激活函数包括常见函数(如线性激活函数、sigmoid、ReLU)和不那么常见的(如 Gaussian、sinusoid、step),它们编码输入和输出之间的多种关系。
实验结果
该研究在三个连续控制任务上评估权重无关神经网络(WANN):CartPoleSwingUp、BipedalWalker-v2 和 CarRacing-v0。研究者基于之前研究常用的标准前馈网络策略创建权重无关网络架构,从中选取最好的 WANN 架构进行平均性能对比(100 次试验)。
表 1:随机采样网络和使用权重训练的网络在连续控制任务上的性能。
传统的固定拓扑网络仅在大量调参后才能生成有用的行为,而 WANN 使用随机共享权重都可以执行任务。
由于 WANN 很小,很容易解释,因此我们可以查看以下网络图示,了解其工作原理。
图 4:权重无关拓扑随着时间的变化。Generation 128:添加复杂度,以改进小车的平衡动作。
模型最终在 BipedalWalker-v2 任务上获得的最好效果。