快捷搜索:  汽车  科技

中线定理证明的过程(中线定理的四种证法)

中线定理证明的过程(中线定理的四种证法)故所以,由平方关系,联想到勾股定理,为此构造直角三角形。过点A作AE⊥BC,垂足为E,根据△ABC的不同形状,垂足E可能在线段BD上、线段CD上、BC的延长线或CB的延长线上,当然E还可能与D点重合,此时△ABC是等腰三角形,结论显然成立。下面我们只证明垂足E在线段CD上的情况,其他情况类似证明。由勾股定理,有:

作者 | 孙志跃

中线定理:已知AD是△ABC的边BC上的中线,则

中线定理证明的过程(中线定理的四种证法)(1)

中线定理给出了三角形的中线与三边的关系,这个定理是怎么得到的呢?下面我们将给出该定理的四种证明方法。

证法一(纯几何法):

由平方关系,联想到勾股定理,为此构造直角三角形。

过点A作AE⊥BC,垂足为E,根据△ABC的不同形状,垂足E可能在线段BD上、线段CD上、BC的延长线或CB的延长线上,当然E还可能与D点重合,此时△ABC是等腰三角形,结论显然成立。下面我们只证明垂足E在线段CD上的情况,其他情况类似证明。

中线定理证明的过程(中线定理的四种证法)(2)

由勾股定理,有:

所以,

证法二(解析几何法):

解析几何法的特点在于计算,需要用到了两点之间的距离公式。

因为D点为中点,由中点坐标公式,有:

(此处,我们用表示P点的横坐标和纵坐标,下同。)

由恒等关系:

进一步可得:

,得证。

证法三(余弦定理):

使用余弦定理证明也很简洁。

由余弦定理得:

因为BD=CD,∠ADB ∠ADC=180°,

所以

所以

从而

证法四(向量法):

由于,所以,

从而

中线定理证明的过程(中线定理的四种证法)(3)

猜您喜欢: