快捷搜索:  汽车  科技

钙钛矿太阳能电池应用知乎(碳基钙钛矿太阳能电池新纪录)

钙钛矿太阳能电池应用知乎(碳基钙钛矿太阳能电池新纪录)Figure 2. Interface coupling of D-MWCNT and Spiro-OMeTAD at molecular level. a) XPS of C1s core line and b) O1s core line for D-MWCNT. c) FTIR of Spiro-OMeTAD with and without D-MWCNT the inset depicts the characteristic peak shift toward high frequency compared with pure D-MWCNT in detail. d) CPD mapping images of Spiro-OMeTAD with and without D-MWCNT. e) Ultraviolet photoelectron spectroscopy o

钙钛矿太阳能电池应用知乎(碳基钙钛矿太阳能电池新纪录)(1)

钙钛矿太阳能电池应用知乎(碳基钙钛矿太阳能电池新纪录)(2)

近日,大连理工大学史彦涛教授团队在顶级期刊Advanced Functional Materials上在线发表重要研究,报道了一种通过缺陷控制的高性能碳基钙钛矿太阳能电池。多壁碳纳米管与石墨烯的界面耦合作用实现了电子的快速转移,功率转换效率达到了22.07%,打破了碳基太阳能电池的认证记录(21.9%)。

【研究概要】

碳基钙钛矿太阳能电池(C-PSCs)的电荷转移动力学缓慢,在功率转换效率(PCE)方面远远落后于Ag/Au基普通PSCs。本研究展示了利用缺陷多壁碳纳米管(D-MWCNT)来调整空穴传输层(HTL)和HTL与碳电极之间的界面的电荷转移动力学。利用D-MWCNT末端含氧基团与2 2 ',7 7 ' -四(N N-二氧基苯胺)-9 9 ' -螺旋双芴之间的静电偶极矩相互作用,在分子水平上建立了界面偶联。通过边缘效应诱导的电子再分配和一维超通道可以实现快速电荷转移。同时,在一种新型模块化C-PSCs中,由于D-MWCNT与石墨烯在纳米尺度上的界面耦合,HTL与碳电极实现了无缝连接。基于这一战略,高PCE达到22.07% (C-PSCs的认证记录为21.9%),并取得了良好的运行稳定性。

【研究背景】

钙钛矿太阳能电池在过去的十年里引起了相当大的关注由于其独特的光电性能和显著增加的电转换效率(PCE)。然而,Ag/Au金属电极易受卤化物离子腐蚀的特性以及高昂的成本阻碍了PSCs的大规模商业化。另外,PSCs中使用的碳电极表现出优异的耐腐蚀性和对热和湿气的环境耐受性。此外,与Ag/ au基器件相比,碳基PSCs (C-PSCs)更具成本效益。近年来,各种碳材料被开发用作C-PSCs的电极,包括碳纳米管(CNT)、炭黑、石墨烯等。而C-PSCs长期以来在PCE方面进展缓慢,通常与同期Ag/ au器件的PCE存在7%以上的差距,这是严重阻碍C-PSCs实际应用的瓶颈问题。C-PSCs相对较低的PCE可归因于碳电极及相关界面的电荷滞缓输运或转移动力学引起的大量能量损失。

本研究合成的MC-PSCs实现了从17.5%到22.07%的增强PCE(认证的PCE为21.9%),这是迄今为止C-PSCs的最高PCE记录,也可与基于ag的设备在相同制造条件下的PCE相媲美。同时,未封装的装置也表现出良好的运行稳定性。

【图文解析】

钙钛矿太阳能电池应用知乎(碳基钙钛矿太阳能电池新纪录)(3)

Figure 1. Electrostatic distribution and morphology of D-MWCNT as well as the theoretical interface coupling at molecular level. a) Electrostatic potential mapping images of D-CNT. b) Schematic diagram of electrostatic dipole moment interaction between D-MWCNT and Spiro-OMeTAD. c) Schematic illustration of D-MWCNT formation from MWCNT through ball milling. d–f) SEM image of pristine MWCNT (d) D-MWCNT in aggregate (e) and individual D-MWCNT (f).

钙钛矿太阳能电池应用知乎(碳基钙钛矿太阳能电池新纪录)(4)

Figure 2. Interface coupling of D-MWCNT and Spiro-OMeTAD at molecular level. a) XPS of C1s core line and b) O1s core line for D-MWCNT. c) FTIR of Spiro-OMeTAD with and without D-MWCNT the inset depicts the characteristic peak shift toward high frequency compared with pure D-MWCNT in detail. d) CPD mapping images of Spiro-OMeTAD with and without D-MWCNT. e) Ultraviolet photoelectron spectroscopy of Spiro-OMeTAD with and without D-MWCNT. f) Electric field-dependent hole mobility of Spiro-OMeTAD film with and without D-MWCNT the inset shows the configuration for SCLC measurement. g) Schematic illustration of interface coupling at molecular level in enhancing carrier extraction behaviors of Spiro-OMeTAD.

钙钛矿太阳能电池应用知乎(碳基钙钛矿太阳能电池新纪录)(5)

Figure 3. Interface coupling of HTL and graphene at nanometer scale. a b) C-AFM images c d) AFM height images e f) the water contact angles for Spiro-OMeTAD films without (a c e) and with (b d f) D-MWCNT modification. g h) False-colored cross-sectional SEM images of C-PSCs using Spiro-OMeTAD HTLs without (g) and with (h) D-MWCNT modification. Insets more visibly illustrate their different contact conditions at the HTL/graphene interface.

钙钛矿太阳能电池应用知乎(碳基钙钛矿太阳能电池新纪录)(6)

Figure 4. Physical and optronic characterizations of complete MC-PSC devices.

钙钛矿太阳能电池应用知乎(碳基钙钛矿太阳能电池新纪录)(7)

Figure 5. Photovoltaic performance and operational stability of the MC-PSCs.

【文章信息】

Wang Y. Li W. Yin Y. Wang M. Cai W. Shi Y. Guo J. Shang W. Zhang C. Dong Q. Ma H. Liu J. Tian W. Jin S. Bian J. Shi Y. Defective MWCNT Enabled Dual Interface Coupling for Carbon-based Perovskite Solar Cells with Efficiency Exceeding 22%. Adv. Funct. Mater. 2022 2204831.

https://doi.org/10.1002/adfm.202204831

欢迎各位专家转发和评论,并提出您的观点,共同交流。

同时也欢迎各位专家供稿,分享贵组研究!

更多科技快讯,请关注我们头条号和公众号“泛函科研”!

猜您喜欢: