神经网络算法数学原理(神经网络原来是这样和数学挂钩的)
神经网络算法数学原理(神经网络原来是这样和数学挂钩的)假设一个神经元从其他多个神经元接收了输入信号,这时如果所接收的信号之和比较小,没有超过这个神经元固有的边界值(称为阈值),这个神经元的细胞体就会忽略接收到的信号,不做任何反应。那么,神经元究竟是怎样对输入信号进行合并加工的呢?让我们来看看它的构造。神经元示意图神经元主要由细胞体、轴突、树突等构成。树突是从其他神经元接收信号的突起。轴突是向其他神经元发送信号的突起。由树突接收的电信号在细胞体中进行处理之后,通过作为输出装置的轴突,被输送到其他神经元。另外,神经元是借助突触结合而形成网络的。让我们来更详细地看一下神经元传递信息的结构。如上图所示,神经元是由细胞体、树突、轴突三个主要部分构成的。其他神经元的信号(输入信号)通过树突传递到细胞体(也就是神经元本体)中,细胞体把从其他多个神经元传递进来的输入信号进行合并加工,然后再通过轴突前端的突触传递给别的神经元。
近几年,有几个被媒体大肆报道的事件,如下表所示。
如上所示,深度学习作为人工智能的一种具有代表性的实现方法,取得了很大的成功。那么,深度学习究竟是什么技术呢?深度学习里的“学习”是怎么做到的呢?为了解答这个疑问,我们需要先来了解一下神经网络,因为深度学习是以神经网络为出发点的。
神经网络的灵感来源谈到神经网络的想法,我们需要从生物学上的神经元(neuron)开始说起。从生物学扎实的研究成果中,我们可以得到以下关于构成大脑的神经元知识。
人的大脑是由多个神经元互相连接形成网络而构成的。也就是说,一个神经元从其他神经元接收信号,也向其他神经元发出信号。大脑就是根据这个网络上的信号的流动来处理各种各样的信息的。
神经元示意图
神经元主要由细胞体、轴突、树突等构成。树突是从其他神经元接收信号的突起。轴突是向其他神经元发送信号的突起。由树突接收的电信号在细胞体中进行处理之后,通过作为输出装置的轴突,被输送到其他神经元。另外,神经元是借助突触结合而形成网络的。
让我们来更详细地看一下神经元传递信息的结构。如上图所示,神经元是由细胞体、树突、轴突三个主要部分构成的。其他神经元的信号(输入信号)通过树突传递到细胞体(也就是神经元本体)中,细胞体把从其他多个神经元传递进来的输入信号进行合并加工,然后再通过轴突前端的突触传递给别的神经元。
那么,神经元究竟是怎样对输入信号进行合并加工的呢?让我们来看看它的构造。
假设一个神经元从其他多个神经元接收了输入信号,这时如果所接收的信号之和比较小,没有超过这个神经元固有的边界值(称为阈值),这个神经元的细胞体就会忽略接收到的信号,不做任何反应。
注:对于生命来说,神经元忽略微小的输入信号,这是十分重要的。反之,如果神经元对于任何微小的信号都变得兴奋,神经系统就将“情绪不稳定”。
不过,如果输入信号之和超过神经元固有的边界值(也就是阈值),细胞体就会做出反应,向与轴突连接的其他神经元传递信号,这称为点火。