快捷搜索:  汽车  科技

多相光催化技术的研究热点:产率增加500倍成功挑战

多相光催化技术的研究热点:产率增加500倍成功挑战编辑:沈湫莎作者:许琦敏在此背景下,研究团队提出了一种利用气液固段塞流来实现非均相光催化连续流合成的新方法。得益于液弹内部的内循环和形成的薄液膜,该方法可以有效避免固体催化剂在流动过程中的沉积和堵塞,可弥补传统填充床方式压降高的缺陷,同时又强化了光催化转化过程中的光传递和质量传递过程。研究发现,连续流能显著缩短反应时间;含气率的提高有利于形成更稳定的气液固段塞流,液段更短,而气泡与微通道间的薄液膜长度与厚度增加,催化剂颗粒在液段间穿梭。在高含气率下,总流速的提高使得液段内循环涡量更大,从而强化液固传质效率,进而提高光催化反应速率。最后,经过反应参数的优化,产物偶氮类化合物的时空产率达到26.1mmol/h*L,通过“数增放大”,产率可达目前文献报道的釜式反应器(80L)的500多倍,使得该技术具有极高的商业应用意义。该工作揭示了该流动模式与光催化反应过程的耦合调控机制,以及对光催化合成偶氮

多相光催化技术的研究热点:产率增加500倍成功挑战(1)

气液固段塞流强化偶氮化合物的非均相光催化合成

近日,中国科学院上海高等研究院唐志永研究员和张洁副研究员所带领的工程科学团队,在流动化学强化偶氮化合物的非均相光催化合成研究中取得重要进展,研究成果发表在国际顶尖的化工期刊《ChemicalEngineeringJournal》上。论文的第一作者为上海高等研究院的陈宇航博士。

芳香偶氮类化合物广泛应用于医药、染料、液晶材料、食品添加剂等领域。在国家碳达峰和碳中和的背景下,光催化转化作为可持续的低碳技术,可在温和条件下解锁传统策略无法实现的化学反应,促成各种物质的高效利用,降低过程能耗,提高生产过程本质安全水平。

连续流反应器可以大大改善釜式反应器的“光受限”问题,而非均相光催化剂的使用可以克服均相体系中催化剂回收难的缺点,然而如何在连续流中高效地应用非均相光催化剂是个非常大的挑战。

在此背景下,研究团队提出了一种利用气液固段塞流来实现非均相光催化连续流合成的新方法。得益于液弹内部的内循环和形成的薄液膜,该方法可以有效避免固体催化剂在流动过程中的沉积和堵塞,可弥补传统填充床方式压降高的缺陷,同时又强化了光催化转化过程中的光传递和质量传递过程。

研究发现,连续流能显著缩短反应时间;含气率的提高有利于形成更稳定的气液固段塞流,液段更短,而气泡与微通道间的薄液膜长度与厚度增加,催化剂颗粒在液段间穿梭。在高含气率下,总流速的提高使得液段内循环涡量更大,从而强化液固传质效率,进而提高光催化反应速率。最后,经过反应参数的优化,产物偶氮类化合物的时空产率达到26.1mmol/h*L,通过“数增放大”,产率可达目前文献报道的釜式反应器(80L)的500多倍,使得该技术具有极高的商业应用意义。

该工作揭示了该流动模式与光催化反应过程的耦合调控机制,以及对光催化合成偶氮类化合物的强化机理;为流动化学提供了使用非均相催化剂的新路径,可作为一种普适的方法强化各类材料、精细化学品和药物中间体的合成,推动其由传统间歇工艺向绿色、安全、高效的连续流工艺转变。

作者:许琦敏

编辑:沈湫莎

图片来源:中科院高研院

猜您喜欢: