nature国际专栏:拼命搞创新 却不被买账 Nature子刊万字深挖消费者心思
nature国际专栏:拼命搞创新 却不被买账 Nature子刊万字深挖消费者心思情绪式捷思产生偏见的认知,甚至可能诱导产生“辐照食品具有健康风险”的认知[111]。与那些对核能持中立或积极态度的消费者相比,那些排斥核能的消费者认为食品辐照技术的风险更大、益处更少[3]。当然,人造肉是符合动物福利原则的。不过,目前还没关于这方面的信息如何影响消费者对该技术接受程度的研究[56]。一些研究表明,这方面的意义可能是有限的,因为消费者认为饲养和宰杀动物吃肉是合理的[109]。因此,对许多消费者来说,人造肉在动物福利方面的益处与其它益处相比(如天然性、口感或价格)就显得不那么重要了。 一项食品技术所使用的标签对如何理解和接受该技术有很大的影响。“食品辐照”一词会引起人们的消极联想(如核电站或细胞破坏),并且核能相关的认知似乎会影响人们对这种食品技术的看法[3 110]。(编者注:食品辐照技术是指将食物暴露在游离辐射下,以杀灭食物所携带的微生物。)
人造肉人造肉(亦称为培植肉)是基于干细胞技术在实验室里培育出来的[103]。它被认为是一种更可持续、对动物更友好的替代传统牲畜肉类生产的方式。
在探究人造肉的接受程度的研究中,不同的描述方式和标签可能在一定程度上解释了为什么不同研究的接受度会存在显著差异[104]。重要的是,如何描述人造肉会影响人们对产品天然性的认知[105]。
消费者对实验室生产的肉制品的反应是厌恶感的表现[106 107]。产品天然性的感知度被证实是影响人造肉接受程度的重要因素[59 105 108]。那些认为人造肉不具天然性的消费者认为人造肉存在的风险比传统肉类更难以接受,并且这些消费者对人造肉有更强的厌恶感[59 105]。
因此,如何描述该产品以及使用什么样的产品标签对消费者接受人造肉的程度是至关重要的。
当然,人造肉是符合动物福利原则的。不过,目前还没关于这方面的信息如何影响消费者对该技术接受程度的研究[56]。一些研究表明,这方面的意义可能是有限的,因为消费者认为饲养和宰杀动物吃肉是合理的[109]。因此,对许多消费者来说,人造肉在动物福利方面的益处与其它益处相比(如天然性、口感或价格)就显得不那么重要了。
食品辐照技术一项食品技术所使用的标签对如何理解和接受该技术有很大的影响。“食品辐照”一词会引起人们的消极联想(如核电站或细胞破坏),并且核能相关的认知似乎会影响人们对这种食品技术的看法[3 110]。
(编者注:食品辐照技术是指将食物暴露在游离辐射下,以杀灭食物所携带的微生物。)
与那些对核能持中立或积极态度的消费者相比,那些排斥核能的消费者认为食品辐照技术的风险更大、益处更少[3]。
情绪式捷思产生偏见的认知,甚至可能诱导产生“辐照食品具有健康风险”的认知[111]。
研究表明,一项食品技术的命名对人们的感知十分重要。与标有“经电离处理”的产品相比,标有“经辐照处理”的产品被认为质量更糟糕[3]。“电离处理”似乎不像“辐射处理”那样会引发负面印象。
因此,消费者认为辐照食品不可接受,并且该技术的利用会造成较低用户接受度就不足为奇了[112]。
新型食品技术的未来
我们需要广泛的农业食品技术来生产安全、健康、可持续的食品。这些被贴上“破坏性”标签的技术可能是气候变化和人口增长背景下解决粮食安全问题的一部分。
大多数对行业产生颠覆性影响的创新技术都来自食品领域之外[113]。图 1 进一步显示了食品系统中有限的颠覆性创新。然而,为了应对气候变化、人口增长和食物供应中断带来的挑战,颠覆性创新势在必行。为了成功地在食品领域引入这种革新,需要在技术发展的早期阶段审查社会的接受程度。
对大多数消费者来说,食品生产越来越成为一种“暗箱操作”。随着深加工方便食品的普及,以及越来越多人不再掌握烹饪技术,消费者对食物的生产方式和食物的制作方式越发模糊[114]。
未来的研究需要探究 COVID-19 危机是否会影响消费者对食品技术的看法,因为罐装类和冷冻类等食品对食物储备是至关重要的。
由于消费者缺乏对这些食品技术的了解,他们经常依赖简单的捷思法进行评估,所以对消费者而言,在看待新食品技术的问题上,经验比理智分析更为重要[117]。
一般来说,消费者依赖于以“天然的是更好的”和“情绪效应”为基础的捷思法,这是他们对一些新的食品技术排斥原因之一。
如图 2 所示,技术特点和消费者特征都进一步影响他们的感知度。
图 2 | 影响食品技术认知的因素 食品技术如何被消费者认知既取决于对食品技术的感知方面,也取决于消费者的个人特征。此外,这两方面因素影响消费者在评估食品技术利弊和接受程度时所依赖的捷思。
如果一项技术被认为是不天然的、可怕的、不可控制的,如果人们不是自愿地接受它,那么对这项技术的接受程度就会很低。与人相关的因素(如新食品技术恐惧症、厌恶敏感性和文化价值观念)会进一步影响对一项技术的看法。
然而,导致食品技术缺乏接受度的最关键因素往往因技术而异。
崇尚天然式捷思与人们对新食品技术接受程度和对食品的评价尤其相关。
食品行业参与者意识到天然性感知对消费者的重要性,因此,他们在营销活动中强调产品的天然性。
矛盾的是,一方面食品行业竭力让消费者接受新的食品技术(由于产品缺乏天然性);另一方面,食品行业又强调其产品的天然性,这可能进一步强化了消费者认为天然产品更好的观念。
同样,有机食品的推广可能会更加助长这样一种观念:消费者认为天然食品更好,尽管没有科学依据支持有机食品对环境更加友好[115]。
技术创新和科学进步使许多国家拥有高水平的食品安全和保障。但是,具有讽刺意味的是,至少在许多发达国家,食品的天然性因为被视为“有安全保障”而被赋予很高的价值。
没有新的食品技术,却想实现更可持续、更安全、更安全的食品体系是难以想象的。因此,食品领域存在的对技术的普遍质疑是一个巨大的挑战。
在这篇综述中,我们提出了一些有助于解释为什么人们经常以一种相对消极的方式评价新食品技术的原因。
在我们看来,出于各种原因,对这些技术的谴责本来就存有问题。深冻冰箱可以用来储存冰激凌或蔬菜,这种蔬菜比在超市购买的新鲜蔬菜(采摘到食用之间的几天为常温存放)含有更多维生素。即使是生产高度加工食品的挤压机也可以用于有助于均衡饮食的食品(如,全麦意大利面)。
事实上,主要矛盾是生产的目的,而不是使用了哪一项技术。社会应该朝着更健康饮食的方向发展,但是与此同时,我们也应该意识到,食品技术是这种趋势的一部分,而不是障碍。
我们还发现了一些未来研究应该解决的研究局限。该领域大多数的研究是在发达国家(主要是欧洲和北美国家)。在这篇综述中涉及到的许多主题缺乏来自亚洲或非洲国家的研究。比如,我们需要了解天然性这个概念是否在发展中国家同等重要。
另一个具有前景的未来研究方向是文化价值观念对新型食品技术接受程度的影响。为数不多的研究探究了关于文化价值观的影响,然而这些研究集中于一个国家内部的个体差异,未能解决文化价值观念是否也解释了不同国家之间的观念差异的问题。
最后,作物的基因组编辑在近年里取得了很大进展,不过,各国在规范 CRISPR 农作物的方式以及是否将它们被视为类转基因食物方面存在差异[116]。有研究表明,消费者普遍对 CRISPR 工程作物抱有比基因技术的作物更积极的态度[7]。
无论如何,对新食品技术的认知是具有可塑性的。未来研究需要探索消费者如何认知不同的食品技术以及强烈影响这些技术接受程度的因素。
参考文献:
1. Frewer L. J. etal. Consumer response to novel agri-food technologies: Implications forpredicting consumer acceptance of emerging food technologies. Trends Food Sci.Technol. 22 442–456 (2011).
2. Frewer L. J. etal. Public perceptions of agri-food applications of genetic modification: asystematic review and meta-analysis. Trends Food Sci. Technol. 30 142–152(2013).
3. Bearth A. &Siegrist M. “As long as it is not irradiated” Influencing factors of USconsumers’ acceptance of food irradiation. Food Qual. Preference 71 141–148(2019).
4. Cardello A. V.Consumer concerns and expectations about novel food processing technologies:effects on product liking. Appetite 40 217–233 (2003).
5. Lusk J. L. Roosen J. & Bieberstein A. Consumer acceptance of new food technologies:causes and roots of controversies. Annu. Rev. Resour. Econ. 6 381–405 (2014).
6. AttitudesTowards the Impact of Digitisation and Automation on Daily Life SpecialEurobarometer 460 (European Commission 2017).
7. Gaskell G. etal. The 2010 Eurobarometer on the life sciences. Nat. Biotechnol. 29 113–114(2011).
8. Rozin P. Themeaning of “natural”. Psychol. Sci. 16 652–658 (2005).
9. Roman S. Sanchez-Siles L. M. & Siegrist M. The importance of food naturalness forconsumers: results of a systematic review. Trends Food Sci. Technol. 67 44–57(2017).
10. Pliner P.& Hobden K. Development of a scale to measure the trait of food neophobiain humans. Appetite 19 105–120 (1992).
11. Cox D. N.& Evans G. Construction and validation of a psychometric scale to measureconsumers’ fears of novel food technologies: the food technology neophobiascale. Food Qual. Preference 19 704–710 (2008). 12. Dordevic D. &Buchtova H. Factors influencing sushi meal as representative ofnon-traditional meal: consumption among Czech consumers. Acta Alimentaria 46 76–83 (2017).
13. Siegrist M.& Hartmann C. Impact of sustainability perception on consumption oforganic meat and meat substitutes. Appetite 132 196–202 (2019).
14. Wardle J. Parmenter K. & Waller J. Nutrition knowledge and food intake. Appetite34 269–275 (2000).
15. Hartmann C.& Siegrist M. Consumer perception and behaviour regarding sustainableprotein consumption: a systematic review. Trends Food Sci. Technol. 61 11–25(2017).
16. Connor M.& Siegrist M. Factors influencing peoples’ acceptance of gene technology:the role of knowledge health concerns naturalness and social trust. Sci.Commun. 32 514–538 (2011).
17. Slovic P. Finucane M. L. Peters E. & MacGregor D. G. Risk as analysis and risk asfeelings: some thoughts about affect reason risk and rationality. Risk Anal.24 311–322 (2004).
18. Gigerenzer G.& Gaissmaier W. Heuristic decision making. Annu. Rev. Psychol. 62 451–482(2011).
19. Kahneman D. Slovic P. & Tversky A. Judgment Under Uncertainty: Heuristics and Biases(Cambridge Univ. Press 1982).
20. Kahneman D.& Frederick S. in The Cambridge Handbook of Thinking and Reasoning (eds.Holyoak K. J. & Morrison G.) 267–293 (Cambridge Univ. Press 2005).
21. Montibeller G.& von Winterfeldt D. Cognitive and motivational biases in decision andrisk analysis. Risk Anal. 35 1230–1251 (2015).
22. Gigerenzer G. Todd P. M. & the ABC Research Group Simple Heuristics That Make us Smart(Oxford Univ. Press 1999).
23. Siegrist M. Hartmann C. & Sütterlin B. Biased perception about gene technology: howperceived naturalness and affect distort benefit perception. Appetite 96 509–516 (2016).
24.Gigerenzer G.Why heuristics work. Perspect. Psychol. Sci. 3 20–29 (2008).
25.Finucane M. L. Alhakami A. Slovic P. & Johnson S. M. The affect heuristic in judgmentsof risks and benefits. J. Behav. Decis. Making 13 1–17 (2000).
26.Pachur T. Hertwig R. & Steinmann F. How do people judge risks: availabilityheuristic affect heuristic or both? J. Exp. Psychol. Appl. 18 314–330(2012).
27.Slovic P.Perception of risk. Science 236 280–285 (1987).
28.Townsend E.& Campbell S. Psychological determinants of willingness to taste andpurchase genetically modified food. Risk Anal. 24 1385–1393 (2004).
29.Connor M. &Siegrist M. The power of association: its impact on willingness to buy GMfood. Hum. Ecol. Risk Assess. 17 1142–1155 (2011).
30.Siegrist M. Cousin M.-E. Kastenholz H. & Wiek A. Public acceptance ofnanotechnology foods and food packaging: the influence of affect and trust.Appetite 49 459–466 (2007).
31.Sokolowska J.& Sleboda P. The inverse relation between risks and benefits: the role ofaffect and expertise. Risk Anal. 35 1252–1267 (2015).
32.Scott S. E. Inbar Y. & Rozin P. Evidence for absolute moral opposition to geneticallymodified food in the United States. Persp. Psychol. Sci. 11 315–324 (2016).
33.Egolf A. Hartmann C. & Siegrist M. When evolution works against the future:disgust's contributions to the acceptance of new food technologies. Risk Anal.39 1546–1559 (2019).
34.Earle T. C.Trust in risk management: a model-based review of empirical research. RiskAnal. 30 541–574 (2010).
35.Siegrist M.Trust and risk perception: a critical review of the literature. Risk Anal.https://doi.org/10.1111/risa.13325 (2019).
36.Hobbs J. E.Information asymmetry and the role of traceability systems. Agribusiness 20 397–415 (2004).
37.Siegrist M.& Cvetkovich G. Perception of hazards: the role of social trust andknowledge. Risk Anal. 20 713–719 (2000).
38.Freudenburg W.R. Risk and recreancy: Weber the division of labor and the rationality ofrisk perceptions. Soc. Forces 71 909–932 (1993).
39.Luhmann N.Vertrauen: Ein Mechanismus der Reduktion sozialer Komplexität (Enke 1989).
40.Roosen J. etal. Trust and willingness to pay for nanotechnology food. Food Policy 52 75–83(2015).
41.Siegrist M. Theinfluence of trust and perceptions of risks and benefits on the acceptance ofgene technology. Risk Anal. 20 195–203 (2000).
42.Yue C. Y. Zhao S. L. Cummings C. & Kuzma J. Investigating factors influencingconsumer willingness to buy GM food and nano-food. J. Nanopart. Res. 17 283(2015).
43.Bratanova B. Morrison G. Fife-Schaw C. Chenoweth J. & Mangold M. Restoringdrinking water acceptance following a waterborne disease outbreak: the role oftrust risk perception and communication. J. Appl. Social Psychol. 43 1761–1770 (2013).
44.Earle T. C.& Cvetkovich G. T. Social Trust: Toward a Cosmopolitan Society (Praeger 1995).
45.Allum N. Anempirical test of competing theories of hazard-related trust: the case of GMfood. Risk Anal. 27 935–946 (2007).
46.Siegrist M. Earle T. C. & Gutscher H. (eds.) Trust in Cooperative Risk Management:Uncertainty and Scepticism in the Public Mind (Earthscan 2007).
47.Rozin P. Fischler C. & Shields-Argeles C. European and American perspectives onthe meaning of natural. Appetite 59 448–455 (2012).
48.Evans G. deChallemaison B. & Cox D. N. Consumers’ ratings of the natural andunnatural qualities of foods. Appetite 54 557–563 (2010).
49.Rozin P.Naturalness judgments by lay Americans: Process dominates content in judgmentsof food or water acceptability and naturalness. Judgment Decis. Making 1 91–97(2006).
50.Rozin P. Fischler C. & Shields-Argeles C. Additivity dominance: Additivites aremore potent and more often lexicalized across languages than are“subtractives”. Judgment Decis. Making 4 475–478 (2009).
51.Scott S. E.& Rozin P. Are additives unnatural? Generality and mechanisms ofadditivity dominance. Judgment Decis. Making 12 572–583 (2017).
52.Rozin P. et al.Preference for natural: instrumental and ideational/moral motivations and thecontrast between foods and medicines. Appetite 43 147–154 (2004).
53.Li M. &Chapman G. B. Why do people like natural? Instrumental and ideational basesfor the naturalness preference. J. Appl. Social Psychol. 42 2859–2878 (2012).
54.Siegrist M. Hubner P. & Hartmann C. Risk prioritization in the food domain usingdeliberative and survey methods: differences between experts and laypeople.Risk Anal. 38 504–524 (2018).
55.Aschemann-Witzel J. & Grunert K. G. Attitude towards resveratrol as a healthy botanicalingredient: The role of naturalness of product and message. Food Qual.Preference 57 126–135 (2017).
56.Bryant C. J. Anderson J. E. Asher K. E. Green C. & Gasteratos K. Strategies forovercoming aversion to unnaturalness: the case of clean meat. Meat Sci. 154 37–45 (2019).
57. Tversky A.& Kahneman D. The framing of decisions and the psychology of choice.Science 211 453–458 (1981).
58. Runge K. K. Chung J. H. Su L. Y. F. Brossard D. & Scheufele D. A. Pink slimed:media framing of novel food technologies and risk related to ground beef andprocessed foods in the US. Meat Sci. 143 242–251 (2018).
59. Siegrist M.& Sütterlin B. Importance of perceived naturalness for acceptance of foodadditives and cultured meat. Appetite 113 320–326 (2017).
60. Bryant C. J.& Barnett J. C. What’s in a name? Consumer perceptions of in vitro meatunder different names. Appetite 137 104–113 (2019).
61. Lin W. Ortega D. L. Caputo V. & Lusk J. L. Personality traits and consumeracceptance of controversial food technology: A cross-country investigation ofgenetically modified animal products. Food Qual. Preference 76 10–19 (2019).
62. Evans G. Kermarrec C. Sable T. & Cox D. N. Reliability and predictive validityof the Food Technology Neophobia Scale. Appetite 54 390–393 (2010).
63. Schnettler B.et al. Psychometric analysis of the Food Technology Neophobia Scale in a Chileansample. Food Qual. Preference 49 176–182 (2016).
64. Cavaliere A.& Ventura V. Mismatch between food sustainability and consumer acceptancetoward innovation technologies among Millenial students: the case of shelf lifeextension. J. Cleaner Prod. 175 641–650 (2018).
65. De Steur H. Odongo W. & Gellynck X. Applying the food technology neophobia scale in adeveloping country context. A case-study on processed matooke (cooking banana)flour in Central Uganda. Appetite 96 391–398 (2016).
66. Lähteenmäki L. et al. Acceptability of genetically modified cheese presented as realproduct alternative. Food Qual. Preference 13 523–533 (2002).
67. Brunner T. A. Delley M. & Denkel C. Consumers’ attitudes and change of attitude toward3D-printed food. Food Qual. Preference 68 389–396 (2018).
68. Aerni P. Scholderer J. & Ermen D. How would Swiss consumers decide if they hadfreedom of choice? Evidence from a field study with organic conventional andGM corn bread. Food Policy 36 830–838 (2011). 69. Curtis V. Why disgustmatters. Philos. Trans. R. Soc. B 366 3478–3490 (2011).
70. Hoefling A. etal. When hunger finds no fault with moldy corn: food deprivation reducesfood-related disgust. Emotion 9 50–58 (2009).
71. Olatunji B. O.et al. The disgust scale: item analysis factor structure and suggestions forrefinement. Psychol. Assess. 19 281–297 (2007).
72. Hartmann C.& Siegrist M. Development and validation of the Food Disgust Scale. FoodQual. Preference 63 38–50 (2018).
73. Ammann J. Siegrist M. & Hartmann C. The influence of disgust sensitivity onself-reported hygiene behaviour. Food Control 102 131–138 (2019).
74. Curtis V. deBarra M. & Aunger R. Disgust as an adaptive system for disease avoidancebehaviour. Philos. Trans. R. Soc. B 366 389–401 (2011). 75. Egolf A. Siegrist M. & Hartmann C. How people’s food disgust sensitivity shapestheir eating and food behaviour. Appetite 127 28–36 (2018).
76. Scott S. E. Inbar Y. Wirz C. D. Brossard D. & Rozin P. An overview of attitudestoward genetically engineered food. Annu. Rev. Nutr. 38 459–479 (2018).
77. Royzman E. Cusimano C. & Leeman R. F. What lies beneath? Fear vs. disgust asaffective predictors of absolutist opposition to genetically modified food andother new technologies. Judgment Decis. Making 12 466–480 (2017).
78. Douglas M.& Wildavsky A. Risk and culture: An Essay on the Selection ofTechnological and Environmental Dangers (Univ. California Press 1982). 79.Dake K. Orienting dispositions in the perception of risk: An analysis ofcontemporary worldviews and cultural biases. J. Cross-Cultural Psychol. 22 61–82 (1991).
80. Peters E.& Slovic P. The role of affect and worldviews as orienting dispositions inthe perception and acceptance of nuclear power. J. Appl. Social Psychol. 26 1427–1453 (1996).
81. Marris C. Langford I. H. & O’Riordan T. A quantitative test of the cultural theoryof risk perceptions: comparison with the psychometric paradigm. Risk Anal. 18 635–647 (1998).
82. Kahan D. M. Braman D. Slovic P. Gastil J. & Cohen G. Cultural cognition of therisks and benefits of nanotechnology. Nat. Nanotechnol. 4 87–90 (2009).
83. Schwartz S. H.Universals in the content and structure of values: Theoretical advances andempirical tests in 20 countries. Adv. Exp. Social Psychol. 25 1–65 (1992).
84. Sjöberg L.Factors in risk perception. Risk Anal. 20 1–11 (2000). 85. Starr C. Socialbenefit versus technological risk. Science 165 1232–1238 (1969).
86. Fife-Schaw C.& Rowe G. Extending the application of the psychometric approach forassessing public perceptions of food risks: Some methodological considerations.J. Risk Res. 3 167–179 (2000).
87.Kirk S. F. L. Greenwood D. Cade J. E. & Pearman A. D. Public perception of a range ofpotential food risks in the United Kingdom. Appetite 38 189–197 (2002).
88.Sparks P. &Shepherd R. Public perceptions of the potential hazards associated with foodproduction and food consumption: an empirical study. Risk Anal. 14 799–806(1994).
89.Frewer L. J.Consumer acceptance and rejection of emerging agrifood technologies and theirapplications. Eur. Rev. Agric. Econ. 44 683–704 (2017).
90.Food Safety inthe EU Special Eurobarometer Wave EB91.3 (European Commission 2019).
91.Mielby H. Sandoe P. & Lassen J. The role of scientific knowledge in shaping publicattitudes to GM technologies. Public Understanding Sci. 22 155–168 (2013).
92.Prati G. Pietrantoni L. & Zani B. The prediction of intention to consumegenetically modified food: Test of an integrated psychosocial model. Food Qual.Preference 25 163–170 (2012).
93.Zhang Y. Y. etal. Application of an integrated framework to examine Chinese consumers’purchase intention toward genetically modified food. Food Qual. Preference 65 118–128 (2018).
94.Frewer L. J. Scholderer J. & Bredahl L. Communicating about the risks and benefits ofgenetically modified foods: the mediating role of trust. Risk Anal. 23 1117–1133 (2003).
95.Gaskell G. etal. Biotechnology and the European public. Nat. Biotechnol. 18 935–938 (2000).
96.Connor M. &Siegrist M. Sorting biotechnology applications: Results of multidimensionalscaling (MDS) and cluster analysis. Public Understanding Sci. 22 128–136(2013).
97.Kronberger N. Wagner W. & Nagata M. How natural is “more natural”? The role of method type of transfer and familiarity for public perceptions of cisgenic andtransgenic modification. Sci. Commun. 36 106–130 (2014).
98.Peters R. J. B.et al. Nanomaterials for products and application in agriculture feed andfood. Trends Food Sci. Technol. 54 155–164 (2016).
99.Currall S. C. King E. B. Lane N. Madera J. & Turner S. What drives publicacceptance of nanotechnology? Nat. Nanotechnol. 1 153–155 (2006).
100.Duncan T. V.The communication challenges presented by nanofoods. Nat. Nanotechnol. 6 683–688 (2011).
101.Satterfield T. Kandlikar M. Beaudrie C. E. H. Conti J. & Herr Harthorn B.Anticipating the perceived risk of nanotechnologies. Nat. Nanotechnol. 4 752–758 (2009).
102.Siegrist M.& Keller C. Labeling of nanotechnology consumer products can influencerisk and benefit perceptions. Risk Anal. 31 1762–1769 (2011).
103.Post M. J.Cultured meat from stem cells: challenges and prospects. Meat Sci. 92 297–301(2012).
104.Bryant C.& Barnett J. Consumer acceptance of cultured meat: a systematic review.Meat Sci. 143 8–17 (2018).
105. Siegrist M. Sutterlin B. & Hartmann C. Perceived naturalness and evoked disgustinfluence acceptance of cultured meat. Meat Sci. 139 213–219 (2018).
106. Marcu A. etal. Analogies metaphors and wondering about the future: lay sense-makingaround synthetic meat. Public Understanding Sci. 24 547–562 (2015).
107. Verbeke W. etal. ‘Would you eat cultured meat?’: Consumers’ reactions and attitude formationin Belgium Portugal and the United Kingdom. Meat Sci. 102 49–58 (2015).
108. Wilks M.& Phillips C. J. C. Attitudes to in vitro meat: a survey of potentialconsumers in the United States. PLoS ONE 12 e0171904 (2017).
109. Rothgerber H.Real men don’t eat (vegetable) quiche: masculinity and the justification ofmeat consumption. Psychol. Men Masculinity 14 363–375 (2013).
110. Behrens J.H. Barcellos M. N. Frewer L. J. Nunes T. P. & Landgraf M. Brazilianconsumer views on food irradiation. Innovative Food Sci. Emerg. Technol. 10 383–389 (2009).
111. Finten G. Garrido J. I. Aguero M. V. & Jagus R. J. Irradiated ready-to-eatspinach leaves: how information influences awareness towards irradiationtreatment and consumer’s purchase intention. Radiat. Phys. Chem. 130 247–251(2017).
112. MacRitchie L.A. Hunter C. J. & Strachan N. J. C. Consumer acceptability ofinterventions to reduce Campylobacter in the poultry food chain. Food Control35 260–266 (2014).
113. King A. A.& Baatartogtokh B. How useful is the theory of disruptive innovation? MITSloan Manage. Rev. 57 77–90 (2015).
114. Hartmann C. Dohle S. & Siegrist M. Importance of cooking skills for balanced foodchoices. Appetite 65 125–131 (2013).
115. Poore J.& Nemecek T. Reducing food’s environmental impacts through producers andconsumers. Science 360 987–992 (2018).
116. Cohen J.Fields of dreams: China bets big on genome editing of crops. Science 365 422–425 (2019).
原文链接:https://doi.org/10.1038/s43016-020-0094-x
作者 | Michael Siegrist & Christina Hartmann
编译 | 张砚宁
审校 | 617