星际2最新排名(AlphaStar被职业玩家戏耍)
星际2最新排名(AlphaStar被职业玩家戏耍)AlphaStar 联盟。最初是通过人类玩家的游戏回放视频进行训练,然后与其他对手对抗训练。每次迭代就匹配新的对手,冻结原来的对手,匹配对手的概率和超参数决定了每个智能体采用的的学习目标函数,保留多样性的同时增加难度。智能体的参数通过强化学习进行更新。最终的智能体采样自联盟的纳什分布(没有更换)。首先是第一场:相比此前和 AlphaStar 交手的 LiquidTLO,虫族选手 Bly 更加年长一些——他是一名从魔兽争霸 3 转型的星际 2 选手,已年过 30。然而,在两场比赛中人类玩家使用简单的单矿 Rush 战术获得了几乎相同的胜利。人们纷纷表示:AI 最近的发展似乎仅限于「学会了在聊天频道里发表情」。然而,与围棋人工智能 AlphaGo 走过的轨迹完全不同,在几个月的发展之后,人工智能的游戏似乎完全没有长进,反而是各路人类玩家获得了经验:他们找到了各种各样「戏耍」AI 的方法。我们找
机器之心报道
参与:李泽南、杜伟
今年 1 月,谷歌旗下人工智能科技公司 DeepMind 的「星际争霸 2」人工智能 AlphaStar 曾与人类职业玩家展开了现场对决,并遗憾落败。7 个多月过去了,AI 在「星际争霸」上有什么进展?它现在能否像 DeepMind 所宣称的那样达到职业水平?
为了提高人工智能水平,DeepMind 与暴雪在战网天梯中开放了 AlphaStar:玩家只要进行申请并通过就可以和这个最强 AI 进行在线对决了。而且现在,AlphaStar 已经可以使用全部三个种族。
然而,与围棋人工智能 AlphaGo 走过的轨迹完全不同,在几个月的发展之后,人工智能的游戏似乎完全没有长进,反而是各路人类玩家获得了经验:他们找到了各种各样「戏耍」AI 的方法。
我们找到了 AlphaStar 近期人机大战录像中的三个:
在两场神族对战虫族的比赛中,AlphaStar(P)面对目前全球排名第 50 的 Bly(Z),从头到尾毫无还手之力。
首先是第一场:相比此前和 AlphaStar 交手的 LiquidTLO,虫族选手 Bly 更加年长一些——他是一名从魔兽争霸 3 转型的星际 2 选手,已年过 30。然而,在两场比赛中人类玩家使用简单的单矿 Rush 战术获得了几乎相同的胜利。人们纷纷表示:AI 最近的发展似乎仅限于「学会了在聊天频道里发表情」。
AlphaStar 联盟。最初是通过人类玩家的游戏回放视频进行训练,然后与其他对手对抗训练。每次迭代就匹配新的对手,冻结原来的对手,匹配对手的概率和超参数决定了每个智能体采用的的学习目标函数,保留多样性的同时增加难度。智能体的参数通过强化学习进行更新。最终的智能体采样自联盟的纳什分布(没有更换)。
随着自我博弈的进行,AlphaStar 逐渐开发出了越来越成熟的战术。DeepMind 表示,这一过程和人类玩家发现战术的过程类似:新的战术不断击败旧的战术。
DeepMind AlphaStar 现场首秀落败于人类玩家 MaNa
今年 1 月,DeepMind 的 AlphaStar 终于首次在世人面前亮相。但在对阵人类职业玩家、前 WCS 亚军 MaNa 的一场现场比赛中,人工智能却被人类「狡诈」的战术迷惑,遗憾落败。
在几场展示 AI 实力的 Replay 铺垫之后,AlphaStar 现场比赛却输了。面对刚刚从电脑前起身的 MaNa,DeepMind 的两位科学家 David Sliver 与 Oriol Vinyals 只能露出尴尬的微笑。
在这场比赛中,AI 的一个缺陷暴露出来:除了特定的分兵战术,智能体并没有形成灵活的兵力分配概念。MaNa 采取的策略是:棱镜带着两不朽在 AI 的基地不停骚扰,AlphaStar 一旦回防立刻飞走,等 AI 兵力出门又立刻继续骚扰。因此,面对 MaNa 灵活的出兵策略,AlphaStar 只能被动应战,因而也无法形成对 MaNa 的有效进攻,也导致了最终的落败。
毫无疑问,作为人工智能领先技术的研究机构,DeepMind 的 AlphaGo 和 AlphaFold 等项目不仅引发了全球对于人工智能技术的关注热潮,同时也为新技术在一些领域的落地找到了方向。然而在星际争霸 2 上,人工智能遭遇了前所未有的挑战,不断烧钱的 DeepMind 能否最终找到解决之道?