电动汽车驱动电机种类与性能分析(新能源汽车驱动电机行业研究)
电动汽车驱动电机种类与性能分析(新能源汽车驱动电机行业研究)趋肤效应是指当交变电流流过导体时,导体周围变化的磁场也要在导体中产生感应电流,导体内部的反电动势会强于表面,从而使导体截面的电流分布不均匀,趋近于外表面。电流频率越高,反电动势越强,趋肤效应越明显。交流损耗方面,在上文阐释永磁同步电机的反电动势问题的时候我们已经提过,在高速旋转的电机中,定子线圈会由于切割磁感线形成反电动势,产生涡流。产生定子涡流的磁通主要有三部分:电机的基频磁通(基波),定子开槽、铁芯饱和以及转子运动产生的内部谐波,PWM 逆变器产生的外部谐波。同时,由于交变电流引起的趋肤效应和邻近效应,交流损耗会进一步提高。扁线电机是指,将定子绕组中的传统圆柱形漆包铜线替换为加工成发卡状的漆包铜扁线。圆线电机的定子横截面中,圆形铜线间留下了大量间隙,而扁线电机的定子横截面中,矩形铜线可以更好地填充空间,提高槽满率,这是扁线电机和圆线电机的根本区别所在。 扁线电机相比传统圆线电机,裸铜槽
考虑到消费者对新能源乘用车的性能要求不断提升,电机技术进步、生产规模扩大带来的成本下降,我们预计双电机车型的渗透率会不断提升。根据我们的测算,2021 年的双电机车型渗透率大约为 27%,按每年 5%的速度提升,则2025年双电机车型的渗透率有望达到 47%,双电机车型搭载的驱动电机数量有望达到909万台,新能源乘用车驱动电机装机总量有望达到 1422 万台。
由于新能源乘用车的动力性能越来越强,在高压化趋势下电机电控的绝缘性能也越来越强,因此我们假设新能源乘用车的电机及多合一电驱动系统的单价总体呈上升趋势。当前新能源乘用车驱动电机的单价大约为2500 元(根据巨一科技招股说明书估算),受益于电机性能的不断提升,我们预计2021-2025 年,驱动电机的单价有望以每年大约 2%的增幅提升,至 2025 年单价大约为2706 元。2025年新能源乘用车驱动电机的总装机量为 1422 万台,电机单价2706 元,市场规模为385亿元。假设三合一电驱动系统的单价为 5500 元(根据巨一科技招股说明书估算),以每年 5%的速度逐步上升,则 2025 年单价大约为6685 元。2021 年国内三合一电驱动系统的市场规模大约为 231 亿元,2025 年有望增至950 亿元。
在上文中我们已经提到,新能源汽车驱动电机在性能方面的特殊需求主要体现在功率密度高、调速范围宽、起动转矩大、高效区间广、散热需求强。因此,新能源汽车驱动电机的发展趋势也是围绕这些性能展开,当前比较主流的几个方向即扁线电机、油冷电机以及多合一电驱动总成。 扁线电机拥有更高的功率密度,扁铜线之间间隙较大,冷却油易于渗透,扁线电机的发展推动了直接油冷技术的应用。同时,冷却油拥有良好的绝缘性,可作为减速器及齿轮轴承的润滑油使用,也可收集电机余热用于电池包的保温,直接油冷技术加速了整车热管理系统集成化的进程,对多合一电驱动系统总成的发展有促进作用。
扁线电机:提效降损,铜线、漆膜、设备均有增量
扁线电机是指,将定子绕组中的传统圆柱形漆包铜线替换为加工成发卡状的漆包铜扁线。圆线电机的定子横截面中,圆形铜线间留下了大量间隙,而扁线电机的定子横截面中,矩形铜线可以更好地填充空间,提高槽满率,这是扁线电机和圆线电机的根本区别所在。 扁线电机相比传统圆线电机,裸铜槽满率可提升 20%-30%。槽满率的提高等同于电机在具有相同体积的条件下,可以输出更高的功率和转矩;或者功率相同的条件下,可以减小电机的外径和体积,进而减小电机的重量,所以扁线绕组电机有着更高的功率密度,可以使永磁电机继续向着更小化的方向发展。
相较于圆线电机,扁线电机的首要优势即损耗降低、效率提升。永磁同步电机的损耗中,铜耗(主要是定子绕组中的损耗)占大约65%,铁耗(定子铁芯与转子铁芯中的损耗)占大约 20%,其余损耗占比相对较低。扁线电机和圆线电机的铁耗水平接近,主要区别在铜耗。
铜耗具体可分为直流损耗和交流损耗。直流损耗圆线和扁线都有,但是圆线绕组由于单个绕组的截面尺寸较小,交流损耗几乎可以忽略不计,而扁线绕组由于导体截面尺寸较大,受趋肤效应和邻近效应影响,交流损耗也很重要。直流损耗方面,在电流相数和电流有效值给定的情况下,直流损耗与绕组的直流电阻成正比。由于圆线更细,电阻更高,因此圆线电机的直流损耗通常高于相同条件下的扁线电机。根据《绕组形式对永磁电机磁热性能的影响》,在有限元软件中对额定功率为 35KW 的永磁同步电机的直流损耗进行仿真计算,圆线绕组的直流损耗为 601.6W,扁线绕组的直流损耗为 388-488W,与圆线绕组相比下降了113-214W,降幅为 19%-36%。
交流损耗方面,在上文阐释永磁同步电机的反电动势问题的时候我们已经提过,在高速旋转的电机中,定子线圈会由于切割磁感线形成反电动势,产生涡流。产生定子涡流的磁通主要有三部分:电机的基频磁通(基波),定子开槽、铁芯饱和以及转子运动产生的内部谐波,PWM 逆变器产生的外部谐波。同时,由于交变电流引起的趋肤效应和邻近效应,交流损耗会进一步提高。
趋肤效应是指当交变电流流过导体时,导体周围变化的磁场也要在导体中产生感应电流,导体内部的反电动势会强于表面,从而使导体截面的电流分布不均匀,趋近于外表面。电流频率越高,反电动势越强,趋肤效应越明显。
邻近效应是指,互相靠近的导体通有交变电流时,每一导体不仅处于自身电流产生的电磁场中,同时还处于其它导体中的电流产生的电磁场中,这使得各个导体中的电流分布会受临近导体的影响而不均匀的现象。如果两根导体的电流方向相同,电流则向两侧集中;如果两根导体的电流方向相反,电流则向中间集中。
根据《绕组形式对永磁电机磁热性能的影响》,在有限元软件中对额定功率为35KW的永磁同步电机的交流损耗进行测算,可以明显发现,尺寸越大的扁线绕组交流损耗越大。
更低的损耗意味着更高的效率。根据《绕组形式对永磁电机磁热性能的影响》的仿真测算,电机的最高效率可以达到 97%,圆线绕组的最高效率工作区相对比较小,但是扁线绕组的最高效率工作区比较大,且与槽满率呈正相关关系。扁线电机的效率较圆线电机的效率能提高大约 1%。
但是,电机转速越高,趋肤效应和邻近效应的影响越大,扁线电机高效低损的优势会被削弱。施加在扁线绕组上交流电流频率一定时,扁线绕组的截面积越大,其涡流损耗越大。而传统圆线绕组电机在设计时,一般采用将绕组分裂成多股较细的圆股线,削弱了绕组上的趋肤效应。因此,在扁线绕组等效截面积不变的情况下,将扁线绕组分成多层,构成多层并联支路,单股扁线绕组的截面积将会变小,由趋肤效应引起的涡流损耗也会减小。